Abstract
This paper investigates the use of multiple classifier methods for offline handwritten text line recognition. To obtain ensembles of recognisers we implement a random feature subspace method. The word sequences returned by the individual ensemble members are first aligned. Then the final word sequence is produced. For this purpose we use a voting method and two novel statistical combination methods. The conducted experiments show that the proposed multiple classifier methods have the potential to improve the recognition accuracy of single recognisers.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kim, G., Govindaraju, V., Srihari, S.: Architecture for handwritten text recognition systems. In: Lee, S.W. (ed.) Advances in Handwriting Recognition, pp. 163–172. World Scientific, Singapore (1999)
Senior, A., Robinson, A.: An off-line cursive handwriting recognition system. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(3), 309–321 (1998)
Vinciarelli, A., Bengio, S., Bunke, H.: Offline recognition of unconstrained handwritten texts using HMMs and statistical language models. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(6), 709–720 (2004)
Zimmermann, M., Chappelier, J.C., Bunke, H.: Offline grammar-based recognition of handwritten sentences. IEEE Transactions on Pattern Analysis and Machine Intelligence 28(5), 818–821 (2006)
Rahman, A., Fairhurst, M.: Multiple classifier decision combination strategies for character recognition: A review. International Journal on Document Analysis and Recognition 5(4), 166–194 (2003)
Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. John Wiley & Sons, Chichester (2004)
Oza, N.C., et al. (eds.): MCS 2005. LNCS, vol. 3541. Springer, Heidelberg (2005)
Huang, Y.S., Suen, C.: A method of combining multiple experts for the recognition of unconstrained handwritten numerals. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(1), 90–94 (1995)
Oliveira, L.S., Morita, M., Sabourin, R.: Feature selection for ensembles applied to handwriting recognition. International Journal on Document Analysis and Recognition 8(4), 262–279 (2006)
Sirlantzis, K., Hoque, M.S., Fairhurst, M.C.: Genetic Algorithms for Multi-classifier System Configuration: A Case Study in Character Recognition. In: Kittler, J., Roli, F. (eds.) MCS 2001. LNCS, vol. 2096, pp. 99–108. Springer, Heidelberg (2001)
Gader, P., Mohamed, M., Keller, J.: Fusion of handwritten word classifiers. Pattern Recognition Letters 17, 577–584 (1996)
Günter, S., Bunke, H.: Multiple classifier systems in off-line handwritten word recognition - on the influence of training set and vocabulary size. International Journal of Pattern Recognition and Artificial Intelligence 18(7), 1303–1320 (2004)
Marti, U.V., Bunke, H.: Use of positional information in sequence alignment for multiple classifier combination. In: Kittler, J., Roli, F. (eds.) MCS 2001. LNCS, vol. 2096, pp. 388–398. Springer, Heidelberg (2001)
Bertolami, R., Bunke, H.: Ensemble methods for handwritten text line recognition systems. In: International Conference on Systems, Man and Cybernetics, Hawaii, USA, pp. 2334–2339 (2005)
Fiscus, J.: A post-processing system to yield reduced word error rates: Recognizer output voting error reduction. In: IEEE Workshop on Automatic Speech Recognition and Understanding, Santa Barbara, pp. 347–352 (1997)
Marti, U.V., Bunke, H.: Using a statistical language model to improve the performance of an HMM-based cursive handwriting recognition system. International Journal of Pattern Recognition and Artificial Intelligence 15, 65–90 (2001)
Brakensiek, A., Rigoll, G.: Handwritten address recognition using hidden Markov models. In: Dengel, A., Junker, M., Weisbecker, A. (eds.) Reading and Learning, pp. 103–122. Springer, Heidelberg (2004)
Ho, T.K.: The random space method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(8), 832–844 (1998)
Xu, L., Krzyzak, A., Suen, C.Y.: Methods of combining multiple classifiers and their applications to handwriting recognition. IEEE Transactions on Systems, Man, and Cybernetics 22(3), 418–435 (1992)
Raudys, S.: Trainable fusion rules. I. Large sample size case. Neural Networks 19(10), 1506–1516 (2006)
Marti, U.V., Bunke, H.: The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002)
Johansson, S., et al.: The Tagged LOB Corpus, User’s Manual. Norwegian Computing Center for the Humanities, Bergen, Norway (1986)
Francis, W.N., Kucera, H.: Brown corpus manual, Manual of Information to accompany A Standard Corpus of Present-Day Edited American English, for use with Digital Computers. Department of Linguistics, Brown University, Providence, USA (1979)
Bauer, L.: Manual of Information to Accompany The Wellington Corpus of Written New Zealand English. Department of Linguistics, Victoria University, Wellington, New Zealand (1993)
Goodman, J.: A bit of progress in language modeling. Technical Report MSR-TR-2001-72, Microsoft Research (2001)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Bertolami, R., Bunke, H. (2007). Multiple Classifier Methods for Offline Handwritten Text Line Recognition. In: Haindl, M., Kittler, J., Roli, F. (eds) Multiple Classifier Systems. MCS 2007. Lecture Notes in Computer Science, vol 4472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72523-7_8
Download citation
DOI: https://doi.org/10.1007/978-3-540-72523-7_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72481-0
Online ISBN: 978-3-540-72523-7
eBook Packages: Computer ScienceComputer Science (R0)