Skip to main content

A Decidable Temporal Logic of Repeating Values

  • Conference paper
Logical Foundations of Computer Science (LFCS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4514))

Included in the following conference series:

  • 576 Accesses

Abstract

Various logical formalisms with the freeze quantifier have been recently considered to model computer systems even though this is a powerful mechanism that often leads to undecidability. In this paper, we study a linear-time temporal logic with past-time operators such that the freeze operator is only used to express that some value from an infinite set is repeated in the future or in the past. Such a restriction has been inspired by a recent work on spatio-temporal logics. We show decidability of finitary and infinitary satisfiability by reduction into the verification of temporal properties in Petri nets. This is a surprising result since the logic is closed under negation, contains future-time and past-time temporal operators and can express the nonce property and its negation. These ingredients are known to lead to undecidability with a more liberal use of the freeze quantifier.

Work supported by the Indo-French project “Timed-DISCOVERI” (P2R/RNP scheme).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Areces, C., Blackburn, P., Marx, M.: Hybrid logics: characterization, interpolation and complexity. JSL 66(3), 977–1010 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alur, R., Henzinger, T.: A really temporal logic. JACM 41(1), 181–204 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bojańczyk, M., Muscholl, A., Schwentick, T., Segoufin, L., David, C.: Two-variable logic on words with data. In: LICS’06, pp. 7–16. IEEE Computer Society Press, Los Alamitos (2006)

    Google Scholar 

  4. Demri, S., D’Souza, D.: An automata-theoretic approach to constraint LTL. I & C 205(3), 380–415 (2007)

    MATH  MathSciNet  Google Scholar 

  5. Demri, S., D’Souza, D., Gascon, R.: A decidable temporal logic of repeating values. Technical report, LSV (2007)

    Google Scholar 

  6. Demri, S., Lazić, R.: LTL with the freeze quantifier and register automata. In: LICS, pp. 17–26. IEEE Computer Society Press, Los Alamitos (2006)

    Google Scholar 

  7. Demri, S., Lazić, R., Nowak, D.: On the freeze quantifier in constraint LTL: decidability and complexity. I & C 205(1), 2–24 (2007)

    MATH  Google Scholar 

  8. Esparza, J.: On the decidability of model checking for several μ-calculi and Petri nets. In: Tison, S. (ed.) CAAP 1994. LNCS, vol. 787, pp. 115–129. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  9. Fitting, M.: Modal logic between propositional and first-order. JLC 12(6), 1017–1026 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gastin, P., Kuske, D.: Satisfiability and model checking for MSO-definable temporal logics are in PSPACE. In: Amadio, R.M., Lugiez, D. (eds.) CONCUR 2003. LNCS, vol. 2761, pp. 222–236. Springer, Heidelberg (2003)

    Google Scholar 

  11. Goranko, V.: Hierarchies of modal and temporal logics with references pointers. Journal of Logic, Language, and Information 5, 1–24 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  12. Henzinger, T.: Half-order modal logic: how to prove real-time properties. In: PODC’90, pp. 281–296. ACM Press, New York (1990)

    Google Scholar 

  13. Howell, R.R., Rosier, L.E.: Problems concerning fairness and temporal logic for conflict-free Petri nets. TCS 64, 305–329 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  14. Jančar, P.: Decidability of a temporal logic problem for Petri nets. TCS 74(1), 71–93 (1990)

    Article  Google Scholar 

  15. Kupferman, O., Vardi, M.: Memoryful Branching-Time Logic. In: LICS’06, pp. 265–274. IEEE Computer Society Press, Los Alamitos (2006)

    Google Scholar 

  16. Lazić, R.S.: Safely freezing LTL. In: Arun-Kumar, S., Garg, N. (eds.) FSTTCS 2006. LNCS, vol. 4337, pp. 381–392. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Laroussinie, F., Markey, N., Schnoebelen, P.: Temporal logic with forgettable past. In: LICS’02, pp. 383–392. IEEE Computer Society Press, Los Alamitos (2002)

    Google Scholar 

  18. Lisitsa, A., Potapov, I.: Temporal logic with predicate λ-abstraction. In: TIME’05, pp. 147–155. IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  19. Rabinovich, A.: Decidability and expressive power of real time logics (Invited talk). In: Asarin, E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 32–32. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  20. Segoufin, L.: Automata and logics for words and trees over an infinite alphabet. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 41–57. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  21. ten Cate, B., Franceschet, M.: On the complexity of hybrid logics with binders. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 339–354. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  22. Vardi, M., Wolper, P.: Reasoning about infinite computations. I & C 115, 1–37 (1994)

    MATH  MathSciNet  Google Scholar 

  23. Wolter, F., Zakharyaschev, M.: Spatio-temporal representation and reasoning based on RCC-8. In: KR’00, pp. 3–14. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Sergei N. Artemov Anil Nerode

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Demri, S., D’Souza, D., Gascon, R. (2007). A Decidable Temporal Logic of Repeating Values. In: Artemov, S.N., Nerode, A. (eds) Logical Foundations of Computer Science. LFCS 2007. Lecture Notes in Computer Science, vol 4514. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72734-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72734-7_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72732-3

  • Online ISBN: 978-3-540-72734-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics