Abstract
Compared to SAT, there is no simple concept of what a solution to a QBF problem is. Furthermore, as the series of QBF evaluations shows, the QBF solvers that are available often disagree. Thus, proof generation for QBF seems to be even more important than for SAT. In this paper we propose a new uniform proof format, which captures refutations and witnesses for a variety of QBF solvers, and is based on a novel extended resolution rule for QBF. Our experiments show the flexibility of this new format. We also identify shortcomings of our format and conjecture that a purely resolution based proof calculus is not powerful enough to trace the most efficient solvers.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Stockmeyer, L.J.: The polynomial–time hierarchy. TCS 3, 1–22 (1976)
Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)
Rintanen, J.: Constructing conditional plans by a theorem-prover. Journal of Artificial Intelligence Research 10, 323–352 (1999)
Otwell, C., Remshagen, A., Truemper, K.: An effective QBF solver for planning problems. In: MSV/AMCS, pp. 311–316. CSREA Press (2004)
Giunchiglia, E., Narizzano, M., Tacchella, A.: QBF reasoning on real–world instances. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 105–121. Springer, Heidelberg (2005)
Ladner, R.E.: The computational complexity of provability in systems of modal propositional logic. SIAM Journal on Computing 6(3), 467–480 (1977), http://link.aip.org/link/?SMJ/6/467/1 , doi:10.1137/0206033
Biere, A., et al.: Symbolic model checking without BDDs. In: Cleaveland, W.R. (ed.) ETAPS 1999 and TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999)
Dershowitz, N., Hanna, Z., Katz, J.: Bounded model checking with QBF. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 408–414. Springer, Heidelberg (2005)
Jussila, T., Biere, A.: Compressing BMC encodings with QBF. In: Proc. 4th Intl. Work. on Bounded Model Checking (BMC). To be published in ENTCS, Elsevier, Amsterdam (2006)
Benedetti, M.: Experimenting with QBF-based formal verification. In: Proc. of the 3rd International Workshop on Constraints in Formal Verification (CFV). To be published in ENTCS, Elsevier, Amsterdam (2005)
Plaisted, D.A., Biere, A., Zhu, Y.: A satisfiability procedure for quantified boolean formulae. Discrete Appl. Math. 130(2), 291–328 (2003)
Zhang, L., Malik, S.: Towards a symmetric treatment of satisfaction and conflicts in quantified boolean formula evaluation. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 200–215. Springer, Heidelberg (2002)
Letz, R.: Lemma and model caching in decision procedures for quantified boolean formulas. In: Egly, U., Fermüller, C. (eds.) TABLEAUX 2002. LNCS (LNAI), vol. 2381, pp. 160–175. Springer, Heidelberg (2002)
Giunchiglia, E., Narizzano, M., Tacchella, A.: QUBE: A system for deciding quantified boolean formulas satisfiability. In: Goré, R.P., Leitsch, A., Nipkow, T. (eds.) IJCAR 2001. LNCS (LNAI), vol. 2083, pp. 364–369. Springer, Heidelberg (2001)
Cadoli, M., Giovanardi, A., Schaerf, M.: An algorithm to evaluate quantified boolean formulae. In: Proc. of AAAI/IAAI, pp. 262–267. AAAI Press, Menlo Park (1998)
Samulowitz, H., Bacchus, F.: Using SAT in QBF. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 578–592. Springer, Heidelberg (2005)
Biere, A.: Resolve and expand. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 59–70. Springer, Heidelberg (2005)
Pan, G., Vardi, M.Y.: Symbolic decision procedures for QBF. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 453–467. Springer, Heidelberg (2004)
Benedetti, M.: Evaluating QBFs via symbolic skolemization. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 285–300. Springer, Heidelberg (2005)
Samulowitz, H., Bacchus, F.: Binary clause reasoning in QBF. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, Springer, Heidelberg (2006)
Narizzano, M., Tacchella, A., Pulina, L.: Report of the third QBF solvers evaluation. JSAT 2, 145–164 (2006)
Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Studies in Constructive Mathematics and Mathematical Logic, vol. 2, pp. 115–125 (1968)
Benedetti, M.: sKizzo: A suite to evaluate and certify QBFs. In: Nieuwenhuis, R. (ed.) Automated Deduction – CADE-20. LNCS (LNAI), vol. 3632, pp. 369–376. Springer, Heidelberg (2005)
Yu, Y., Malik, S.: Validating the result of a quantified boolean formula (QBF) solver: theory and practice. In: Proc. of ASP-DAC, pp. 1047–1051. ACM Press, New York (2005)
Kleine Büning, H., Karpinski, M., Flügel, A.: Resolution for quantified boolean formulas. Inf. Comput. 117(1), 12–18 (1995)
Kleine Büning, H., Zhao, X.: On models for quantified boolean formulas. In: Lenski, W. (ed.) Logic versus Approximation. LNCS, vol. 3075, pp. 18–32. Springer, Heidelberg (2004)
Benedetti, M.: Extracting certificates from quantified boolean formulas. In: Proc. of IJCAI, pp. 47–53 (2005)
Büning, H.K., Subramani, K., Zhao, X.: On boolean models for quantified boolean horn formulas. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 93–104. Springer, Heidelberg (2004)
Sinz, C., Biere, A.: Extended resolution proofs for conjoining BDDs. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 600–611. Springer, Heidelberg (2006)
Jussila, T., Sinz, C., Biere, A.: Extended resolution proofs for symbolic SAT solving with quantification. In: Biere, A., Gomes, C.P. (eds.) SAT 2006. LNCS, vol. 4121, pp. 54–60. Springer, Heidelberg (2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Jussila, T., Biere, A., Sinz, C., Kröning, D., Wintersteiger, C.M. (2007). A First Step Towards a Unified Proof Checker for QBF. In: Marques-Silva, J., Sakallah, K.A. (eds) Theory and Applications of Satisfiability Testing – SAT 2007. SAT 2007. Lecture Notes in Computer Science, vol 4501. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72788-0_21
Download citation
DOI: https://doi.org/10.1007/978-3-540-72788-0_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72787-3
Online ISBN: 978-3-540-72788-0
eBook Packages: Computer ScienceComputer Science (R0)