Skip to main content

New Possibilities with Sobolev Active Contours

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4485))

Abstract

Recently, the Sobolev metric was introduced to define gradient flows of various geometric active contour energies. It was shown that the Sobolev metric out-performs the traditional metric for the same energy in many cases such as for tracking where the coarse scale changes of the contour are important. Some interesting properties of Sobolev gradient flows are that they stabilize certain unstable traditional flows, and the order of the evolution PDEs are reduced when compared with traditional gradient flows of the same energies. In this paper, we explore new possibilities for active contours made possible by Sobolev active contours. The Sobolev method allows one to implement new energy-based active contour models that were not otherwise considered because the traditional minimizing method cannot be used. In particular, we exploit the stabilizing and the order reducing properties of Sobolev gradients to implement the gradient descent of these new energies. We give examples of this class of energies, which include some simple geometric priors and new edge-based energies. We will show that these energies can be quite useful for segmentation and tracking. We will show that the gradient flows using the traditional metric are either ill-posed or numerically difficult to implement, and then show that the flows can be implemented in a stable and numerically feasible manner using the Sobolev gradient.

G. Sundaramoorthi and A. Yezzi were supported by NSF CCR-0133736, NIH/NINDS R01-NS-037747, and Airforce MURI; G. Sapiro was partially supported by NSF, ONR, NGA, DARPA, and the McKnight Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1, 321–331 (1987)

    Article  Google Scholar 

  2. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. In: Proceedings of the IEEE Int. Conf. on Computer Vision, Cambridge, MA, USA, June 1995, pp. 694–699. IEEE Computer Society Press, Los Alamitos (1995)

    Chapter  Google Scholar 

  3. Kichenassamy, S., et al.: Gradient flows and geometric active contour models. In: Proceedings of the IEEE Int. Conf. on Computer Vision, pp. 810–815. IEEE Computer Society Press, Los Alamitos (1995)

    Chapter  Google Scholar 

  4. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 42, 577–685 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chan, T., Vese, L.: Active contours without edges. IEEE Transactions on Image Processing 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  6. Chen, Y., et al.: Using prior shapes in geometric active contours in a variational framework. International Journal of Computer Vision 50(3), 315–328 (2002)

    Article  MATH  Google Scholar 

  7. Rousson, M., Paragios, N.: Shape Priors for Level Set Representations. In: Heyden, A., et al. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 78–92. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  8. Cremers, D., Soatto, S.: A pseudo distance for shape priors in level set segmentation. In: IEEE Int. Workshop on Variational, Geometric and Level Set Methods, pp. 169–176. IEEE Computer Society Press, Los Alamitos (2003)

    Google Scholar 

  9. Kim, J., et al.: Nonparametric methods for image processing using information theory and curve evolution. In: IEEE International Conference on Image Processing, vol. 3, pp. 797–800. IEEE Computer Society Press, Los Alamitos (2002)

    Google Scholar 

  10. Rochery, M., Jermyn, I., Zerubia, J.: Higher order active contours and their application to the detection of line networks in satellite imagery. In: IEEE Workshop on VLSM, October 2003, IEEE Computer Society Press, Los Alamitos (2003)

    Google Scholar 

  11. Sundaramoorthi, G., Yezzi, A.J.: More-than-topology-preserving flows for active contours and polygons. In: ICCV, pp. 1276–1283 (2005)

    Google Scholar 

  12. Cohen, L.D., Kimmel, R.: Global minimum for active contour models: A minimal path approach. In: CVPR, pp. 666–673 (1996)

    Google Scholar 

  13. Boykov, Y., Jolly, M.-P.: Interactive graph cuts for optimal boundary and region segmentation of objects in n-d images. In: ICCV, pp. 105–112 (2001)

    Google Scholar 

  14. Kolmogorov, V., Boykov, Y.: What metrics can be approximated by geo-cuts, or global optimization of length/area and flux. In: ICCV, pp. 564–571 (2005)

    Google Scholar 

  15. Michor, P., Mumford, D.: Riemannian geometries on the space of plane curves. ESI Preprint 1425, arXiv:math.DG/0312384 (2003)

    Google Scholar 

  16. Yezzi, A.J., Mennucci, A.: Conformal metrics and true “gradient flows” for curves. In: ICCV, pp. 913–919 (2005)

    Google Scholar 

  17. Yezzi, A.J., Sundaramoorthi, G., Mennucci, A.C.: Sobolev Active Contours. In: Paragios, N., et al. (eds.) VLSM 2005. LNCS, vol. 3752, pp. 109–120. Springer, Heidelberg (2005)

    Google Scholar 

  18. Charpiat, G., et al.: Designing spatially coherent minimizing flows for variational problems based on active contours. In: ICCV (2005)

    Google Scholar 

  19. Sundaramoorthi, G., et al.: Tracking with sobolev active contours. In: CVPR (1), pp. 674–680 (2006)

    Google Scholar 

  20. Horn, B.K.P.: The curve of least energy. ACM Transactions on Mathematical Software 9(4), 441–460 (1983), http://doi.acm.org/10.1145/356056.356061

    Article  MATH  MathSciNet  Google Scholar 

  21. Bruckstein, A.M., Netravali, A.N.: On minimal energy trajectories. Comput. Vision Graph. Image Process. 49(3), 283–296 (1990)

    Article  Google Scholar 

  22. Polden, A.: Curves and Surfaces of Least Total Curvature and Fourth-Order Flows. PhD thesis, Mathematisches Institut Unversitat Tubingen, Germany (1996)

    Google Scholar 

  23. Sapiro, G., Tannenbaum, A.: Area and length preserving geometric invariant scale-spaces. IEEE Trans. Pattern Anal. Mach. Intell. 17(1), 67–72 (1995)

    Article  Google Scholar 

  24. Delingette, H.: On smoothness measures of active contours and surfaces. In: VLSM ’01: Proceedings of the IEEE Workshop on Variational and Level Set Methods (VLSM’01), Washington, DC, USA, p. 43. IEEE Computer Society Press, Los Alamitos (2001)

    Chapter  Google Scholar 

  25. Brook, A., Bruckstein, A.M., Kimmel, R.: On similarity-invariant fairness measures. In: Scale-Space, pp. 456–467 (2005)

    Google Scholar 

  26. Ma, T., Tagare, H.: Consistency and stability of active contours with euclidean and non-euclidean arc lengths. IEEE Transactions on Image Processing 8(11), 1549–1559 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  27. Fua, P., Leclerc, Y.G.: Model driven edge detection. Mach. Vision Appl. 3(1), 45–56 (1990)

    Article  Google Scholar 

  28. Jackson, J., Yezzi, A., Soatto, S.: Tracking deformable moving objects under severe occulsions. In: IEEE Conference on Decision and Control, Dec. 2004, IEEE Computer Society Press, Los Alamitos (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fiorella Sgallari Almerico Murli Nikos Paragios

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Sundaramoorthi, G., Yezzi, A., Mennucci, A.C., Sapiro, G. (2007). New Possibilities with Sobolev Active Contours. In: Sgallari, F., Murli, A., Paragios, N. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2007. Lecture Notes in Computer Science, vol 4485. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72823-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72823-8_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72822-1

  • Online ISBN: 978-3-540-72823-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics