Skip to main content

Dense Optical Flow Estimation from the Monogenic Curvature Tensor

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4485))

  • 2876 Accesses

Abstract

In this paper, we address the topic of estimating two-frame dense optical flow from the monogenic curvature tensor. The monogenic curvature tensor is a novel image model, from which local phases of image structures can be obtained in a multi-scale way. We adapt the combined local and global (CLG) optical flow estimation approach to our framework. In this way, the intensity constraint equation is replaced by the local phase vector information. Optical flow estimation under the illumination change is investigated in detail. Experimental results demonstrate that our approach gives accurate estimation and is robust against noise contamination. Compared with the intensity based approach, the proposed method shows much better performance in estimating flow fields under brightness variations.

This work was supported by German Research Association (DFG) Graduiertenkolleg No. 357 (Di Zang), DFG grant So-320/4-2 (Lennart Wietzke), DFG grant We-2602/5-1 (Christian Schmaltz) and DFG grant So-320/2-3 (Gerald Sommer).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Papenberg, N., et al.: Highly accurate optic flow computation with theoretically justified warping. International Journal of Computer Vision 67(2), 141–158 (2006)

    Article  Google Scholar 

  2. Horn, B., Schunck, B.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)

    Article  Google Scholar 

  3. Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proc. 7th International Joint Conference on Artifical Intelligence, Vancouver, Canada, pp. 674–679 (1981)

    Google Scholar 

  4. Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. International Journal of Computer Vision 12(1), 43–77 (1994)

    Article  Google Scholar 

  5. Fleet, D.J., Jepson, A.D.: Computation of component image velocity from local phase information. International Journal of Computer Vision 5(1), 77–104 (1990)

    Article  Google Scholar 

  6. Bruhn, A., Weickert, J., Schnörr, C.: Lucas/Kanada meets Horn/Schunck: Combining local and global optic flow methods. International Journal of Computer Vision 61(3), 211–231 (2005)

    Article  Google Scholar 

  7. Oppenheim, A.V., Lim, J.S.: The importance of phase in signals. IEEE Proceedings 69, 529–541 (1981)

    Article  Google Scholar 

  8. Felsberg, M., Sommer, G.: The monogenic scale-space: A unifying approach to phase-based image processing in scale-space. Journal of Mathematical Imaging and Vision 21, 5–26 (2004)

    Article  MathSciNet  Google Scholar 

  9. Felsberg, M., Sommer, G.: The monogenic signal. IEEE Transactions on Signal Processing 49(12), 3136–3144 (2001)

    Article  MathSciNet  Google Scholar 

  10. Zetzsche, C., Barth, E.: Foundamental limits of linear filters in the visual processing of two-dimensional signals. Vision Research 30, 1111–1117 (1990)

    Article  Google Scholar 

  11. Young, D.M.: Iterative Solution of Large Linear Systems. Academic Press, London (1971)

    MATH  Google Scholar 

  12. Mémin, E., Pérez, P.: A multigrid approach for hierarchical motion estimation. In: Proc. 6th International Conference on Computer Vision, Bombay, India, Jan. 1998, pp. 933–938. Narosa Publishing House, New Delhi (1998)

    Google Scholar 

  13. Nagel, H.H.: Ettlinger tor traffic sequence. Available at http://i21www.ira.uka.de/image_sequences/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fiorella Sgallari Almerico Murli Nikos Paragios

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Zang, D., Wietzke, L., Schmaltz, C., Sommer, G. (2007). Dense Optical Flow Estimation from the Monogenic Curvature Tensor. In: Sgallari, F., Murli, A., Paragios, N. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2007. Lecture Notes in Computer Science, vol 4485. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72823-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72823-8_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72822-1

  • Online ISBN: 978-3-540-72823-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics