Abstract
We present a hierarchical clustering method for a dataset based on the deep structure of the probability density function (PDF) of the data in the scale space. The data clusters correspond to the modes of the PDF, and their hierarchy is determined by regarding the nonparametric estimation of the PDF with the Gaussian kernel as a scale-space representation. It is shown that the number of clusters is statistically deterministic above a certain critical scale, even though the positions of the data points are stochastic. Such a critical scale is estimated by analysing the distribution of cluster lifetime in the scale space, and statistically valid clusters are detected above the critical scale. This cluster validation using the critical scale can be recursively employed according to the hierarchy of the clusters.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Parzen, E.: On the estimation of a probability density function and mode. Annals of Mathematical Statistics 33, 1065–1076 (1962)
Roberts, S.J.: Parametric and non-parametric unsupervised cluster analysis. Pattern Recognition 30(2), 261–272 (1997)
Nakamura, E., Kehtarnavaz, N.: Determining number of clusters and prototype locations via multi-scale clustering. Pattern Recognition Letters 19(14), 1265–1283 (1998)
Leung, Y., Zhang, J.-S., Xu, Z.-B.: Clustering by scale-space filtering. IEEE Trans. on Pattern Analysis and Machine Intelligence 22(12), 1396–1410 (2000)
Minnotte, M., Scott, D.: The mode tree: A tool for visualization of nonparametric density features. Journal of Computational and Graphical Statistics 2(1), 51–68 (1993)
Comaniciu, D., Meer, P.: Mean shift: A robust approach toward feature space. IEEE Trans. on Pattern Analysis and Machine Intelligence 24(5), 603–619 (2002)
Griffin, L.D., Lillholm, M.: Mode estimation using pessimistic scale space tracking. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695, pp. 266–280. Springer, Heidelberg (2003)
Witkin, A.P.: Scale space filtering. In: Proc. of 8th IJCAI, pp. 1019–1022 (1983)
Koenderink, J.J.: The structure of images. Biological Cybernetics 50, 363–370 (1984)
Zhao, N.-Y., Iijima, T.: Theory on the method of determination of view-point and field of vision during observation and measurement of figure (in Japanese). IEICE Japan, Trans. D. J68-D, 508–514 (1985)
Weickert, J., Ishikawa, S., Imiya, A.: Linear scale-space has first been proposed in Japan. Journal of Mathematical Imaging and Vision 10, 237–252 (1999)
Weickert, J., Ishikawa, S., Imiya, A.: On the history of Gaussian scale-space axiomatics. In: Gaussian Scale-Space Theory. Computational Imaging and Vision Series, vol. 8, pp. 45–59. Kluwer Academic Publishers, Dordrecht (1997)
Lindeberg, T.: Scale-Space Theory in Computer Vision. Kluwer, Boston (1994)
Johansen, P.: On the classification of toppoints in scale space. Journal of Mathematical Imaging and Vision 4(1), 57–67 (1994)
Griffin, L.D., Colchester, A.: Superficial and deep structure in linear diffusion scale space: Isophotes, critical points and separatrices. Image and Vision Computing 13(7), 543–557 (1995)
Florack, L.M.J., Kuijper, A.: The topological structure of scale-space images. Journal of Mathematical Imaging and Vision 12(1), 65–79 (2000)
Kuijper, A., Florack, L.M.J., Viergever, M.A.: Scale space hierarchy. Journal of Mathematical Imaging and Vision 18(2), 169–189 (2003)
Sakai, T., Imiya, A.: Scale-space hierarchy of singularities. In: Fogh Olsen, O., Florack, L.M.J., Kuijper, A. (eds.) DSSCV 2005. LNCS, vol. 3753, pp. 181–192. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Sakai, T., Komazaki, T., Imiya, A. (2007). Scale-Space Clustering with Recursive Validation. In: Sgallari, F., Murli, A., Paragios, N. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2007. Lecture Notes in Computer Science, vol 4485. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72823-8_25
Download citation
DOI: https://doi.org/10.1007/978-3-540-72823-8_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72822-1
Online ISBN: 978-3-540-72823-8
eBook Packages: Computer ScienceComputer Science (R0)