Skip to main content

Convex Inverse Scale Spaces

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4485))

Abstract

Inverse scale space methods are derived as asymptotic limits of iterative regularization methods. They have proven to be efficient methods for denoising of gray valued images and for the evaluation of unbounded operators.

In the beginning, inverse scale space methods have been derived from iterative regularization methods with squared Hilbert norm regularization terms, and later this concept was generalized to Bregman distance regularization (replacing the squared regularization norms); therefore allowing for instance to consider iterative total variation regularization. We have proven recently existence of a solution of the associated inverse total variation flow equation. In this paper we generalize these results and prove existence of solutions of inverse flow equations derived from iterative regularization with general convex regularization functionals.

We present some applications to filtering of color data and for the stable evaluation of the diZenzo edge detector.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acar, R., Vogel, C.: Analysis of bounded variation penalty methods for ill-posed problems. Inverse Problems 10, 1217–1229 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosio, L., Gigli, N., Savaré, G.: Gradient flows. Lectures in mathematics ETH Zürich, p. 333. Birkhäuser Verlag, Basel (2005)

    MATH  Google Scholar 

  3. Aubert, G., Aujol, J.-F.: Modeling very oscillationg signals. application to image processing. Appl. Math. Optim. 51(2), 163–182 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brézis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Mathematics Studies, p. 183. North-Holland Publishing Co., Amsterdam (1973)

    MATH  Google Scholar 

  5. Burger, M., et al.: Inverse total variation flow. Multiscale Model. Simul., accepted (2007)

    Google Scholar 

  6. Burger, M., et al.: Nonlinear inverse scale space methods for image restoration. Comm. Math. Sciences 4, 179–212 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Dacorogna, B.: Direct methods in the calculus of variations, p. 308. Springer-Verlag, Berlin (1989)

    MATH  Google Scholar 

  8. diZenzo, S.: A note on the gradient of a multi-image. Computer Vision, Graphics and Image Processing 33, 116–126 (1986)

    Article  Google Scholar 

  9. Ekeland, I., Temam, R.: Convex analysis and variational problems. Studies in Mathematics and its Applications, vol. 1, p. 402. North-Holland Publishing Co., Amsterdam (1976)

    MATH  Google Scholar 

  10. Engl, H., Hanke, M., Neubauer, A.: Regularization of inverse problems. Mathematics and its Applications, p. 321. Kluwer Academic Publishers Group, Dordrecht (1996)

    MATH  Google Scholar 

  11. Evans, L.C., Gariepy, R.F.: Measure theory and fine properties of functions. Studies in Advanced Mathematics, p. 268. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  12. Groetsch, C.W., Scherzer, O.: Non-stationary iterated Tikhonov - Morozov method and third-order differential equations for the evaluation of unbounded operators. Math. Methods Appl. Sci. 23(15), 1287–1300 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Meyer, Y.: Oscillating patterns in image processing and nonlinear evolution equations. University Lecture Series, vol. 22 (2001)

    Google Scholar 

  14. Osher, S., et al.: An iterative regularization method for total variation based image restoration. Multiscale Model Simul. 4(2), 460–489 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Förstner, W., Gülch, E.: A fast operator for detection and precise location of distinct points, corners and centers od circular features. In: Proceedings of the ISPRS Intercommission Workshop on Fast Processing of Photogrammetric Data, Interlaken, Swizerland, pp. 281–305 (1987)

    Google Scholar 

  16. Weickert, J.: Anisotropic Diffusion in Image Processing. ECMI. B.G. Teubner, Stuttgart (1998)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fiorella Sgallari Almerico Murli Nikos Paragios

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Frick, K., Scherzer, O. (2007). Convex Inverse Scale Spaces. In: Sgallari, F., Murli, A., Paragios, N. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2007. Lecture Notes in Computer Science, vol 4485. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72823-8_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72823-8_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72822-1

  • Online ISBN: 978-3-540-72823-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics