Skip to main content

Riemannian Curvature-Driven Flows for Tensor-Valued Data

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4485))

Abstract

We present a novel approach for the derivation of PDE modeling curvature-driven flows for matrix-valued data. This approach is based on the Riemannian geometry of the manifold of symmetric positive-definite matrices \(\mathcal{P}(n)\). The differential geometric attributes of \(\mathcal{P}(n)\) −such as the bi-invariant metric, the covariant derivative and the Christoffel symbols− allow us to extend scalar-valued mean curvature and snakes methods to the tensor data setting. Since the data live on \(\mathcal{P}(n)\), these methods have the natural property of preserving positive definiteness of the initial data. Experiments on three-dimensional real DT-MRI data show that the proposed methods are highly robust.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarez, L., Lions, P.-L., Morel, J.-M.: Image selective smoothing and edge detection by nonlinear diffusion (II). SIAM J. Num. Anal. 29, 845–866 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alvarez, L., Morel, J.-M.: Morphological Approach to Multiscale Analysis: From Principles to Equations. Kluwer Academic Publishers, Dordrecht (1994)

    Google Scholar 

  3. Arsigny, V., et al.: Fast and simple calculus on tensors in the Log-Euclidean framework. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3749, pp. 115–122. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  4. Basser, P., Matiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biophysical J. 66, 259–267 (1994)

    Article  Google Scholar 

  5. Blomgren, P., Chan, T.: Color TV: Total variation methods for restoration of vector valued images. IEEE Trans. Image Process. 7, 304–378 (1998)

    Article  Google Scholar 

  6. Faugeras, O., et al.: Constrained Flows of Matrix-Valued Functions: Application to Diffusion Tensor Regularization. In: Heyden, A., et al. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 251–265. Springer, Heidelberg (2002)

    Google Scholar 

  7. Cumani, A.: Edge detection in multispectral images. Computer Vision Graphics and Image Processing: Graphical Models and Image Processing 53, 40–51 (1991)

    MATH  Google Scholar 

  8. Deriche, R., et al.: Variational approaches to the estimation, regularization and segmentation of diffusion tensor images. In: Paragios, N., Chen, Y., Faugeras, O. (eds.) Mathematical Models in Computer Vision: The Handbook, Springer, Heidelberg (2005)

    Google Scholar 

  9. Feddern, C., Burgeth, J.W.B., Welk, M.: Curvature-driven PDE methods for matrix-valued images. Int. J. Comput. Vision 69, 93–107 (2006)

    Article  Google Scholar 

  10. Henderson, H., Searle, S.: Vec and vech operators for matrices, with some uses in Jacobians and multivariate statistics. Canad. J. Statist. 7, 65–81 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  11. Jost, J.: Riemannian Geometry and Geometric Analysis, 2nd edn. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  12. Kimmel, R., Malladi, R., Sochen, N.: Images as embedded maps and minimal surfaces: movies, color, texture, and volumetric medical images. Int. J. Compt. Vision 39, 111–129 (2000)

    Article  MATH  Google Scholar 

  13. Lee, H.-C., Cok, D.: Detecting boundaries in a vector field. IEEE Trans. Signal Proc. 39, 1181–1194 (1991)

    Article  Google Scholar 

  14. Lenglet, C., et al.: Statistics on the manifold of multivariate normal distributions: Theory and application to diffusion tensor MRI processing. J. Mathematical Imaging and Vision 25, 423–444 (2006)

    Article  MathSciNet  Google Scholar 

  15. Magnus, J., Neudecker, H.: The elimination matrix: some lemmas and applications. SIAM J. Alg. Disc. Meth. 1, 422–449 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  16. Marquina, A., Osher, S.: Explicit algoritms for a new time dependent model based on level set motion for non-linear deblurring and noise removal. SIAM J. Sci. Compt. 22, 378–405 (2000)

    MathSciNet  Google Scholar 

  17. Moakher, M., Batchelor, P.: The symmetric space of positive definite tensors: From geometry to applications and visualization. In: Weickert, J., Hagen, H. (eds.) Visualization and Processing of Tensor Fields, pp. 285–298. Springer, Berlin (2006)

    Chapter  Google Scholar 

  18. Neviata, R.: A color edge detector and its use in scene segmentation. IEEE Trans. Syst. Man. Cybern. 7, 820–826 (1977)

    Google Scholar 

  19. Osher, S., Rudin, L.: Feature-oriented image enhancement using shock filters. SIAM J. Numer. Anal. 27, 919–940 (1990)

    Article  MATH  Google Scholar 

  20. Pennec, X., Fillard, P., Ayache, N.: A Riemannian framework for tensor computing. Int. J. Compt. Vision 66, 41–66 (2006)

    Article  Google Scholar 

  21. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    MATH  Google Scholar 

  22. Sapiro, G.: Color snakes.Tech. Rep. HPL-95-113, Hewlett Packard Computer Peripherals Laboratory (1995)

    Google Scholar 

  23. Sapiro, G.: Vector-valued active contours. In: Proceedings of Computer Vision and Pattern Recognition, pp. 520–525 (1996)

    Google Scholar 

  24. Sapiro, G., Ringach, D.: Anisotropic diffusion of multivalued images with applications to color filtering. IEEE Trans. Image Process. 5, 1582–1586 (1996)

    Article  Google Scholar 

  25. Sochen, N.A., Kimmel, R., Malladi, R.: A general framework for low level vision. IEEE Trans. Image Process. 7, 310–318 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  26. Wang, Z., et al.: A constrained variational principle for direct estimation and smoothing of the diffusion tensor field from complex DWI. IEEE Trans. Medical Imaging 23, 930–939 (2004)

    Article  Google Scholar 

  27. Weickert, J., Hagen, H. (eds.): Visualization and Processing of Tensor Fields. Springer, Berlin (2006)

    MATH  Google Scholar 

  28. Zéraï, M., Moakher, M.: The Riemannian geometry of the space of positive-definite matrices and its application to the regularization of diffusion tensor MRI data. Submitted to: J. Mathematical Imaging and Vision (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fiorella Sgallari Almerico Murli Nikos Paragios

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Zéraï, M., Moakher, M. (2007). Riemannian Curvature-Driven Flows for Tensor-Valued Data. In: Sgallari, F., Murli, A., Paragios, N. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2007. Lecture Notes in Computer Science, vol 4485. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72823-8_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72823-8_51

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72822-1

  • Online ISBN: 978-3-540-72823-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics