Skip to main content

A Variational Framework for Spatio-temporal Smoothing of Fluid Motions

  • Conference paper
Scale Space and Variational Methods in Computer Vision (SSVM 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4485))

Abstract

In this paper, we introduce a variational framework derived from data assimilation principles in order to realize a temporal Bayesian smoothing of fluid flow velocity fields. The velocity measurements are supplied by an optical flow estimator. These noisy measurement are smoothed according to the vorticity-velocity formulation of Navier-Stokes equation. Following optimal control recipes, the associated minimization is conducted through an iterative process involving a forward integration of our dynamical model followed by a backward integration of an adjoint evolution law. Both evolution laws are implemented with second order non-oscillatory scheme. The approach is here validated on a synthetic sequence of turbulent 2D flow provided by Direct Numerical Simulation (DNS) and on a real world meteorological satellite image sequence depicting the evolution of a cyclone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennet, A.F.: Inverse Methods in Physical Oceanography. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  2. Carlier, J., Wieneke, B.: Report on production and diffusion of fluid mechanics images and data. Technical report, Fluid Project deliverable 1.2 (2005)

    Google Scholar 

  3. Corpetti, T., Mémin, E., Pérez, P.: Dense estimation of fluid flows. IEEE Trans. Pattern Anal. Machine Intell. 24(3), 365–380 (2002)

    Article  Google Scholar 

  4. Corpetti, T., Mémin, E., Pérez, P.: Extraction of singular points from dense motion fields: an analytic approach. J. Math. Imaging and Vision 19(3), 175–198 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cuzol, A., Mémin, E.: A stochastic filter for fluid motion tracking. In: Int. Conf. on Computer Vision (ICCV’05), Beijing, China (October 2005)

    Google Scholar 

  6. Le Dimet, F.-X., Talagrand, O.: Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus 38A, 97–110 (1986)

    Google Scholar 

  7. Fitzpatrick, J.M.: A method for calculating velocity in time dependent images based on the continuity equation. In: Proc. Conf. Comp. Vision Pattern Rec., San Francisco, USA, pp. 78–81 (1985)

    Google Scholar 

  8. Ford, R.M., Strickland, R., Thomas, B.: Image models for 2-d flow visualization and compression. Graph. Mod. Image Proc. 56(1), 75–93 (1994)

    Article  Google Scholar 

  9. Giering, R., Kaminski, T.: Recipes for adjoint code construction. ACM Trans. Math. Softw. 24(4), 437–474 (1998)

    Article  MATH  Google Scholar 

  10. Giles, M.: On the use of runge-kutta time-marching and multigrid for the solution of steady adjoint equations. Technical Report 00/10, Oxford University Computing Laboratory (2000)

    Google Scholar 

  11. Harten, A., et al.: Uniformly high order accurate essentially non-oscillatory schemes, III. J. of Comput. Phys. 71(2), 231–303 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kohlberger, T., Mémin, E., Schnörr, C.: Variational dense motion estimation using the helmholtz decomposition. In: Griffin, L.D., Lillholm, M. (eds.) Scale-Space 2003. LNCS, vol. 2695, pp. 432–448. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Kurganov, A., Levy, D.: A third-order semidiscrete central scheme for conservation laws and convection-diffusion equations. SIAM J. Sci. Comput. 22(4), 1461–1488 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Kurganov, A., Tadmor, E.: New high-resolution central schemes for nonlinear conservation laws and convetion-diffusion equations. J. Comput. Phys. 160(1), 241–282 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Larsen, R., Conradsen, K., Ersboll, B.K.: Estimation of dense image flow fields in fluids. IEEE trans. on Geosc. and Remote sensing 36(1), 256–264 (1998)

    Article  Google Scholar 

  16. Levy, D., Puppo, G., Russo, G.: A third order central weno scheme for 2d conservation laws. Appl. Num. Math.: Trans. of IMACS 33(1–4), 415–421 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Levy, D., Tadmor, E.: Non-oscillatory central schemes for the incompressible 2-d euler equations. Math. Res. Let 4, 321–340 (1997)

    MATH  MathSciNet  Google Scholar 

  18. Mémin, E., Pérez, P.: Fluid motion recovery by coupling dense and parametric motion fields. In: Int. Conf. on Computer, ICCV’99, pp. 620–625 (1999)

    Google Scholar 

  19. Nessyahu, H., Tadmor, E.: Non-oscillatory central differencing for hyperbolic conservation laws. J. of Comput. Phys. 87(2), 408–463 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  20. Oksendal, B.: Stochastic differential equations. Springer, Heidelberg (1998)

    Google Scholar 

  21. Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Lecture Notes in Mathematics, vol. 1697, pp. 325–432. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  22. Talagrand, O.: Variational assimilation. Adjoint equations. Kluwer Academic Publishers, Dordrecht (2002)

    Google Scholar 

  23. Talagrand, O., Courtier, P.: Variational assimilation of meteorological observations with the adjoint vorticity equation. I: Theory. J. of Roy. Meteo. soc. 113, 1311–1328 (1987)

    Article  Google Scholar 

  24. Schnörr, C., et al.: Discrete Orthogonal Decomposition and Variational Fluid Flow Estimation. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds.) Scale-Space 2005. LNCS, vol. 3459, pp. 267–278. Springer, Heidelberg (2005)

    Google Scholar 

  25. Yuan, J., Schnörr, C., Mémin, E.: Discrete orthogonal decomposition and variational fluid flow estimation. Accepted for publication in J. of Math. Imaging and Vision (2006)

    Google Scholar 

  26. Zhou, L., Kambhamettu, C., Goldgof, D.: Fluid structure and motion analysis from multi-spectrum 2D cloud images sequences. In: Proc. Conf. Comp. Vision Pattern Rec., vol. 2, Hilton Head Island, USA, pp. 744–751 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Fiorella Sgallari Almerico Murli Nikos Paragios

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Papadakis, N., Mémin, É. (2007). A Variational Framework for Spatio-temporal Smoothing of Fluid Motions. In: Sgallari, F., Murli, A., Paragios, N. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2007. Lecture Notes in Computer Science, vol 4485. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72823-8_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72823-8_52

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72822-1

  • Online ISBN: 978-3-540-72823-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics