Abstract
This paper proposes an extension of compressed sensing that allows to express the sparsity prior in a dictionary of bases. This enables the use of the random sampling strategy of compressed sensing together with an adaptive recovery process that adapts the basis to the structure of the sensed signal. A fast greedy scheme is used during reconstruction to estimate the best basis using an iterative refinement. Numerical experiments on sounds and geometrical images show that adaptivity is indeed crucial to capture the structures of complex natural signals.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Candès, E., Romberg, J., Tao, T.: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inform. Theory, Submitted (2004)
Donoho, D.: Compressed sensing. IEEE Transactions on Information Theory 52(4), 1289–1306 (2006)
Skarda, C.A., Freeman, W.J.: Does the brain make chaos in order to make sense of the world? Behavioral and Brain Sciences 10, 161–165 (1987)
Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, San Diego (1998)
Donoho, D.: Wedgelets: Nearly minimax estimation of edges. Annals of Statistics 27(3), 859–897 (1999)
Le Pennec, E., Mallat, S.: Bandelet Image Approximation and Compression. SIAM Multiscale Modeling and Simulation 4(3), 992–1039 (2005)
Coifman, R., Wickerhauser, V.: Entropy-based algorithms for best basis selection. IEEE Trans. Inform. Theory 38(2), 713–718 (1992)
Candès, E., Donoho, D.: New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities. Comm. Pure Appl. Math. 57(2), 219–266 (2004)
Hubel, D., Wiesel, T.: Receptive fields and functional architecture of monkey striate cortex. Journal of Physiology (London) 195, 215–243 (1968)
Olshausen, B.A., Field, D.J.: Emergence of simple-cell receptive-field properties by learning a sparse code for natural images. Nature 381(6583), 607–609 (1996)
Lee, T.S.: Computations in the early visual cortex. J. Physiol. Paris 97(2-3), 121–139 (2003)
Chen, S., Donoho, D., Saunders, M.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comp. 20(1), 33–61 (1998)
Daubechies, I., Defrise, M., Mol, C.D.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Comm. Pure Appl. Math. 57, 1413–1541 (2004)
Figueiredo, M., Nowak, R.: An em algorithm for wavelet-based image restoration. IEEE Transactions on Image Processing 12(8), 906–916 (2003)
Candès, E., Romberg, J.: Practical signal recovery from random projections. IEEE Trans. Signal Processing, Submitted (2005)
Tropp, J., Gilbert, A.C.: Signal recovery from partial information via orthogonal matching pursuit. Preprint (2005)
Donoho, D.L., et al.: Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit. Preprint (2006)
Donoho, D., Tsaig, Y.: Extensions of compressed sensing. Preprint (2004)
Le Pennec, E., Mallat, S.: Sparse geometric image representations with bandelets. IEEE Transactions on Image Processing 14(4), 423–438 (2005)
Peyré, G., Mallat, S.: Surface compression with geometric bandelets. ACM Transactions on Graphics (SIGGRAPH’05) 24(3) (2005)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Peyré, G. (2007). Best Basis Compressed Sensing. In: Sgallari, F., Murli, A., Paragios, N. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2007. Lecture Notes in Computer Science, vol 4485. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72823-8_8
Download citation
DOI: https://doi.org/10.1007/978-3-540-72823-8_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72822-1
Online ISBN: 978-3-540-72823-8
eBook Packages: Computer ScienceComputer Science (R0)