
HAL Id: hal-00365607
https://hal.science/hal-00365607

Submitted on 3 Mar 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Best Basis Compressed Sensing
Gabriel Peyré

To cite this version:
Gabriel Peyré. Best Basis Compressed Sensing. Scale Space and Variational Methods in Computer
Vision (SSVM’07), Jun 2007, Ischia, Italy. pp.80-91, �10.1007/978-3-540-72823-8_8�. �hal-00365607�

https://hal.science/hal-00365607
https://hal.archives-ouvertes.fr


Best Basis Compressed Sensing

Gabriel Peyré
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Abstract. This paper proposes an extension of compressed sensing that
allows to express the sparsity prior in a dictionary of bases. This enables
the use of the random sampling strategy of compressed sensing together
with an adaptive recovery process that adapts the basis to the structure
of the sensed signal. A fast greedy scheme is used during reconstruc-
tion to estimate the best basis using an iterative refinement. Numerical
experiments on sounds and geometrical images show that adaptivity is
indeed crucial to capture the structures of complex natural signals.

1 Introduction

1.1 Classical Sampling vs. Compressed Sensing

The classical sampling theory of Shannon is based on uniform smoothness
assumptions (low frequency spectral content). Under band limited condition,
finely enough sampled functions can be recovered from a set of n pointwise
measurements.

However, most natural signals f are characterized by very different prior as-
sumptions, such as a decomposition with few elements on some fixed orthogonal
basis B. This is the case for a sparse expansion of a sound in a 1D local Fourier
basis or the compression of a natural image using a wavelet expansion. Under
such sparseness assumption, one can hope to use a much smaller number n < N
of measurements, which are linear projections Φf = {〈f, ϕi〉}

n
i=1 on a set of

fixed vectors ϕi ∈ R
N . The price to pay for this compressed sampling strategy

is a non-linear reconstruction procedure to recover f from the compressed rep-
resentation Φf . This theory of compressed acquisition of data has been pushed
forward during last few years conjointly by Candès and Tao [1] and Donoho [2].

In order for this recovery to be effective, one needs sensing vectors ϕi that
are incoherent with the vectors of B. A convenient way to achieve this property
is to use random vectors ϕi, which cannot be sparsely represented in basis B.

Application in imaging. Compressed sensing acquisition of data could have an
important impact for the design of imaging devices where data acquisition is
expensive. For instance in seismic or magnetic imaging one could hope to use
few random projections of the object to acquire together with a high precision
reconstruction.



Analogies in physiology. This compressed sampling strategy could potentially
lead to interesting models for various sensing operations performed biologically.
Skarda and Freeman [3] have proposed a non-linear chaotic dynamic to explain
the analysis of sensory inputs. This chaotic state of the brain ensures robustness
toward unknown events and unreliable measurements, without using too many
computing resources. While the theory of compressed sensing is presented here as
a random acquisition process, its extension to deterministic or dynamic settings
is a fascinating area for future research in signal processing.

1.2 The Best Basis Approach

Frames vs. dictionary of bases. Fixed orthogonal bases are not flexible enough
to capture the complex redundancy of sounds or natural images. For instance
the orthogonal wavelet transform [4] lacks of translation and rotation invari-
ance and is not efficient to compress geometric images [5,6]. It is thus useful
to consider families of vectors that are redundant but offer a stable decompo-
sition. For instance, frames of translation invariant wavelets have been used for
image denoising and frames of rotation-invariant Gabor functions are useful to
characterize textures [4].

However, to capture the complex structure of sounds or the geometry of
natural images, one needs a very large number of such elementary atoms. Frame
theory suffers from both theoretical difficulties (lack of stability) and technical
problems (computational complexity) when the number of basis vectors increases
too much. To cope with these problems, one can consider a dictionary D =
{Bλ}λ∈Λ of orthogonal bases Bλ. Choosing an optimal basis in such a dictionary
allows to adapt the approximation to the complex content of a specific signal.

Sound processing. Atoms with a broad range of localizations in space and fre-
quency are needed to represent the transient features that exist in sounds such
as the one depicted in figure 3, (a). Local cosine bases [4] divide the time axis
in segments that are adapted to the local frequency content of the sound. Other
kinds of dictionaries of 1D bases have been proposed, such as the wavelet packets
dictionary [7].

Images and geometry. The set of cartoon images is a simple model that captures
the sketch content of natural images. Figure 4, (a), shows such a geometrically
regular image, which contains smooth areas surrounded by regular curves. The
curvelet frame of Candès and Donoho [8] can deal with such a regularity and en-
joys a better approximation rate than traditional isotropic wavelets. This result
can be enhanced using a dictionary of locally elongated functions that follow
the image geometry. Bandelets bases of Le Pennec and Mallat [6] provide such
a geometric dictionary together with a fast optimization procedure to compute
a basis adapted to a given image.

Adaptive biological computation. Hubel and Wiesel have shown that low level
computation done in area V1 of the visual cortex are well approximated by mul-
tiscale oriented linear projections [9]. Olshausen and Field proposed in [10] that



redundancy is important to account for sparse representation of natural inputs.
However further non-linear processings are done by the cortex to remove high
order geometrical correlations present in natural images. Such computations are
thought to perform long range groupings over the first layer of linear responses
[11] and thus correspond to an adaptive modification of the overall neuronal
response. The best-basis coding strategy could thus offer a signal-processing
counterpart to this neuronal adaptivity. This paper only deals with orthogonal
best basis search but extensions of this approach to dictionaries of redundant
transforms are likely to improve numerical results and better cope with biological
computations.

1.3 Best Basis Computation

Notations. The ℓp norms are defined by

||f ||pℓp =
∑

i

|f [i]|p and ||f ||ℓ0 = # {i \ f [i] 6= 0} .

A dictionary DΛ = {Bλ}λ∈Λ is a set of orthogonal bases Bλ = {ψλ
m}m of R

N .
A cost pen(λ) is defined as a prior complexity measure associated to each basis
Bλ and satisfies

∑

λ∈Λ 2− pen(λ) = 1. A fixed weight pen(λ) = log2(M) can be
used if the size M of D is finite. The parameter pen(λ) can be interpreted as
the number of bits needed to specify a basis Bλ. Following the construction of
Coifman and Wickerhauser [7], a best basis Bλ∗

adapted to a signal minimizes
a Lagrangian L

λ∗ = argmin
λ∈Λ

L(f, λ, t) where L(f, λ, t) = ||Ψλf ||ℓ1 + C0 t pen(λ), (1)

where Ψλ = [ψλ
0 , . . . , ψ

λ
N−1]

T
is the transform matrix defined by Bλ. This best

basis Bλ∗

is thus the one that gives the sparsest description of f as measured
by the ℓ1 norm. The Lagrange multiplier C0 t weights the penalization pen(λ)
associated to the complexity of a basis Bλ. The parameter t is the noise level due
to acquisition errors or approximate sparsity, whereas C0 is a scaling constant
that can be tuned for a specific dictionary DΛ. Note that t is estimated iteratively
during the recovery algorithms presented in subsections 2.2 and 3.2.

Practical best basis computation. For a dictionary D that enjoys a multiscale
structure, the optimization of L is carried out with a fast procedure. This al-
gorithm uses the fact that if a basis splits as Bλ = Bλ0 ∪ Bλ1 , the Lagrangian
satisfies L(f, λ, t) = L(f, λ0, t) + L(f, λ1, t). It is thus only needed to compute
the value of L on elementary bases from which each basis Bλ can be decom-
posed. The number of such elementary bases is usually much smaller than the
total number of bases. A bottom-up regression algorithm is then used to search
for λ∗, see [7,6] for practical examples of this process.



2 Compressed Sensing Reconstruction

In this paper, the sampling matrix Φ = [ϕ0, . . . , ϕn−1]
T

is defined by random
points {ϕi}i of unit length although other random sensing schemes can be used,
see [1].

2.1 Basis Pursuit Formulation

Searching for the sparsest signal f∗ in some basis B = {ψm}m that matches
the sensed values y = Φf leads to consider

f∗ = argmin
g∈RN

||Ψ g||ℓ0 subject to Φg = y. (2)

where Ψ = [ψ0, . . . , ψN−1]
T

is the transform matrix defined by B. The combina-
torial optimization (2) is NP-hard to solve and convexification of the objective
function is introduced in the following basis pursuit [12] formulation

f∗ = argmin
g∈RN

||Ψ g||ℓ1 subject to Φg = y. (3)

Candès and Tao in [1] and Donoho in [2] have shown that, if f is sparse enough in
some basis B, f can be recovered from the sensed data y = Φf . More precisely,
they show that it exists a constant C such that if ||Ψf ||ℓ0 6 k then if n >

C log(N) k one recovers f∗ = f .
To deal with noisy measurements y = Φf + w, where w is a Gaussian noise

of variance t2, one can turn the constrained formulations (3) into a penalized
variational problem

f∗ = argmin
g∈RN

(1

2
||Φg − y||2ℓ2 + t||Ψg||ℓ1

)

. (4)

The Lagrange multiplier t accounts both for stabilisation against noise and ap-
proximate sparsity, which is common in practical applications.

This approximate sparsity is characterized by the decays of the best M -term
approximation fM of f in basis B defined by

fM =
∑

m∈It

〈f, ψm〉ψm where It = {m \ |〈f, ψm〉| > t}

and M = Card(It). This can also be understood as an approximation using a
thresholding of the coefficients of f in B that are below t. The approximation
power of B is measured by the decay of the approximation error ||f − fM || 6

CM−α. The parameter α is a measure of the smoothness of f with respect to
the basis B.

The function f with an approximation exponent α can be seen as a k-sparse
function f corrupted by a deterministic noise of amplitude k−α. One thus needs
to choose a threshold t ∼ p−α for a compressed sensing scenario where p >



C log(N) k. Candès et al. [1] shows that the ℓ1 minimization (4) leads to a
recovery error of order n−α up to some logarithmic factors.

The relationship t ∼ p−α (up to logarithmic factors) is not precise enough to
be useful in real applications, but reveals the insight behind the regularization
formulation (4). When the number n of acquired samples decreases, the noise in
the function reconstructed with basis pursuit (3) increases and the regularization
imposed by the sparsity ||Ψf ||ℓ1 needs to be increased.

2.2 Iterative Thresholding For Sparsity Minimization

The recovery procedure suggested by equation (4) corresponds to the inver-
sion of the operator Φ under sparsity constraints on the observed signal f . In
this paper we follow Daubechies et al. that propose in [13] an algorithm based
on iterated thresholding to perform such regularized inversion. This algorithm
had been previously used for image restauration by Figueiredo and Nowak [14]
and is derived in [15] as the iteration of two projections on convex sets.

Other greedy algorithms such as orthogonal matching pursuit (OMP) [16]
and stagewise orthogonal matching pursuit [17] (StOMP) have been used to solve
the compressed sensing reconstruction in a fast way. These algorithms do not fit
very well into the best-basis extension exposed in section 3, mainly because OMP
is too computationally intensive for imaging applications and because StOMP
performed a very agressive iterations (which speed up computation but bias the
choice of best-basis toward the initially chosen basis).

We make repeated use of the soft thresholding operator defined in an orthog-
onal basis B = {ψm}m

St(g) =
∑

m

st(〈g, ψm〉)ψm where st(x) = sign(x)(|x| − t)+.

The algorithm. The steps of the algorithm are

• Initialization. Set s = 0, f0 = 0.

• Step 1: Updating the estimate. Set fs+1 = fs +ΦT(y−Φfs). This update
is an orthogonal projection on the convex set {g \ Φg = y}.

• Step 2: Denoising the estimate. Estimate the noise level σs using a median
estimator in the transformed domain σs = median(|Ψfs+1|)/0.6745 and set the
threshold to t = 3σs. Compute fs+1 = St(fs+1) the thresholding of f in basis
B. This step corresponds to a projection on a ℓ1 ball {g \ ||Ψg||ℓ1 6 c} for some
c that depends on t.

• Stopping criterion. If s < smax, go to step 1, otherwise stop iterations.

In all our experiments, the number of iterations is set to smax = 20. The strategy
of updating t through iterations has been adopted by Donoho et al. in their
extension of orthogonal matching pursuit [17]. The median estimator of the
noise is based on the assumption, accurate in practice, that the current estimate
fs+1 is corrupted by a Gaussian noise which diminishes during iterations.



3 Best Basis Compressed Sensing

3.1 Variational Formulation

To enhance the quality of the recovery in real life compressed sensing applica-
tions, the use of redundant frames has been proposed by several authors [18,15].
Redundancy can impact compressed sensing efficiency, because random sensing
vectors can be correlated once inverted through the frame operator Ψ , since it
is not orthogonal. This paper uses a different approach relying on orthogonal
transforms which does not lower the recovery property of the sampling matrix
Φ. It also allows a more efficient approximation through the use of a best basis
in a large dictionary.

The compressed sensing machinery is extended to a dictionary of bases DΛ by
imposing that the recovered signal is sparse in at least one basis of DΛ. To avoid
using too complex basis the recovery process from noisy measurements takes into
account a complexity pen(λ) of the optimal basis Bλ. This is coherent with the
best-basis approximation scheme of [5,6], although penalization is not strictly
required in classical statistical estimation. The original recovery procedure (4)
is replaced by the following minimization

f∗ = argmin
g∈RN

min
λ∈Λ

(1

2
||Φg − y||2ℓ2 + t ||Ψλ g||ℓ1 + C0 t

2 pen(λ)
)

, (5)

where the penalization C0 t
2 pen(λ) is the same as in equation (1).

3.2 Best Basis Recovery Algorithm

Searching in the whole dictionary D for the best basis that minimizes for-
mulation (5) is not feasible for large dictionaries, which typically contain of the
order of 2N bases. Instead we propose a greedy search for the best basis during
the recovery process. This leads to the following algorithm.

• Initialization. Set s = 0, f0 = 0 and choose λ0 ∈ Λ at random or using some
default choice (such as a DCT basis in 1D or a wavelet basis in 2D).

• Step 1: Updating the estimate. Set fs+1 = fs + ΦT(y − Φfs).

• Step 2: Denoising the estimate. Compute the noise level

σs = median(|Ψfs+1|)/0.6745

and set the threshold to t = 3σs. Compute fs+1 = St(fs+1) where St is the
threshold operator at t in the basis Bλs .

• Step 3: Update best basis. Compute λs+1 = argminλ L(fs+1, λ, t). For
typical dictionaries such as the ones considered in this paper, this minimization
is carried out with a fast procedure, as seen in subsection 1.3.

• Stopping criterion. If s < smax, go to step 1, otherwise stop iterations.



4 Best Local Cosine Basis Compressed Sensing

4.1 Adapted Local Cosine Transform

For each scale j > 0, the set of locations {0, . . . , N − 1} is subdivided using
N/2j intervals [xj

p, x
j
p+1], where the endpoints are given by xj

p = 2−jNp − 1/2.

A local cosine basis Bp
j = {ψjp

k }k is defined for each of these intervals using

∀ k = 0, . . . , N/2j − 1, ∀ ℓ,

ψjp
k [ℓ] = b

(

2j(ℓ− xj
p)

)

√

2

2−jN
cos

[

π
(

k +
1

2

)ℓ− xj
p

2−jN

]

,

where b is a smooth windowing function that satisfies some compatibility con-
ditions [4]. A local cosine basis Bλ of R

N is parameterized by a binary tree
segmentation λ of {0, . . . , N − 1}, see [4]. The set of leaves L = {Lp

j} of λ are
indexed by their depth j > 0 and position p in the binary tree, see figure 1, left.
The basis Bλ is the union of the various elementary bases Bλ =

⋃
{

Bp
j \ Lp

j ∈ L
}

,
see figure 1, right. For this local cosine basis dictionary, the penalization pen(λ)
is defined as the number of leaves in the binary tree λ.

The decomposition of a signal f in each of the basis Bp
j is computed in

O(N log(N)2) time using FFT. From these atomic decompositions, a best basis
Bλ∗

that minimizes (1) can be extracted by a tree pruning procedure in O(N)
time, see [7,4].

j = 0

j = 1

j = 2

p = 1

p = 1 2

1 2
3 4

Fig. 1. A dyadic tree λ defining a spatial segmentation (left) ; some local cosine basis
functions ψjp

k of the basis B
λ (right).

4.2 Numerical Results

A synthetic sparse signal f = (Ψλ)−1h is generated using a random local
cosine basis Bλ and a random signal of spikes h with ||h||ℓ0 = 30, see figure 2,
(a). The signal recovered by the non-adaptative algorithm of subsection 2.2 in
an uniform cosine basis Bλ0 is significantly different from the original, figure 2,
(b). This is due to the fact that f is less sparse in Bλ0 , since ||Ψλ0f ||ℓ0 = 512



(a)

(c1)

(c2)

(c3)

(b)

Fig. 2. (a) synthetic sound signal with 30 random cosine atoms N = 4096 ; (b) recovery
using a fixed cosine basis ; (c1) first iteration of the best basis recovery algorithm,
n = N/3 ; (c2) iteration s = 5 ; (c3) iteration s = 20.

and ||Ψλ0f ||ℓ1 ≈ 2.8||Ψλf ||ℓ1 . During the iterations of the algorithm presented in
subsection 3.2, the estimated best basis Bλs evolves in order to match the best
basis Bλ, see figure 2, (c1–c3). The recovered signal (c3) is nearly identical to f .

On figure 3 one can see a real sound signal of a tiger howling, together with
the signals recovered from fixed basis and adapted basis iterations. Although
the final adapted basis is not the same as the one of the original signal, it still
provides an improvement of 2dB with respect to a fixed spatial subdivision.

5 Best Bandelet Basis Compressed Sensing

5.1 Adapted Bandelet Transform

The bandelet bases dictionary was introduced by Le Pennec and Mallat [6,19]
to perform adaptive approximation of images with geometric singularities, such
as the cartoon image in figure 4, (a). We present a simple implementation of the
bandelet transform inspired from [20].

A bandelet basis Bλ is parameterized by λ = (Q, {θS}S∈Q), where Q is a
quadtree segmentation of the pixels locations and θS ∈ [0, π[∪Ξ is an orientation
(or the special token Ξ) defined over each square S of the segmentation, see figure
4, (a). The bandelet transform corresponding to this basis applies independently
over each square S of the image either



(a)

(b)

(c)

Fig. 3. (a) sound signal of a tiger howling, together with the best spatial segmentation,
N = 32768 ; (b) recovery using fixed local cosine basis, n = N/3 (PSNR=19.24dB) ;
(c) recovery using best cosine basis, n = N/3 (PSNR=21.32dB)

• if θS = Ξ: a 2D isotropic wavelet transform,

• if θS 6= Ξ: a 1D wavelet transform along the direction defined by the angle θS .

We now detail the latter transform. The position of a pixel x = (x1, x2) ∈ S with
respect to the direction θS is px = sin(θS)x1 − cos(θS)x2. The m pixels {x(i)}
in S are ranked according to the 1D ordering px(0) 6 px(1) 6 . . . 6 px(m−1) .
This ordering allows to turn the image {f [x]}x∈S defined over S into a 1D
signal f1D[i] = f [x(i)], see figure 4, (c). The bandelet transform of the image f
inside S is defined as the 1D Haar transform of the signal f1D, see figure 4, (d).
This process is both orthogonal and easily invertible, since one only needs to
compute the inverse Haar transform and pack the retrieved coefficients at the
original pixels locations. Keeping only a few bandelet coefficients and setting the
others to zero performs an approximation of the original image that follows the
local direction θS , see figure 4 (f).

In order to restrict the number of tested geometries θ for a square S ∈ Q
containing #S pixels, we follow [20] and use the set of directions that pass
through two pixels of S. The number of such directions is of the order of (#S)2.
For this bandelet dictionary, the penalization of a basis Bλ where λ = (Q, {θS}S)
is defined as pen(λ) = #Q+

∑

S∈Q 2 log2(#S), where #Q is the number of leaves
in Q. A fast best basis search, described in [20], allows to define a segmentation
Q and a set of directions {θS}S adapted to a given image f by minimizing (1).
This process segments the image into squares S on which f is smooth, thus
setting θS = Ξ and squares containing an edge, where θS closely matches the
direction of this singularity.

5.2 Numerical Results

The geometric image depicted in figure 5, (a) is used to compare the per-
formance of the original compressed sensing algorithm in a wavelet basis to the
adaptative algorithm in a best bandelet basis. Since the wavelet basis is not



(b)

(a)

(c)

(d)

(e)

(f)S

θS

f1D

f

Fig. 4. (a) a geometric image together with some adapted dyadic segmentation Q ; (b)
a square S together with some adapted direction θS ; (c) the 1D signal f1D obtained
by mapping the pixels values f(x(i)) on a 1D axis ; (d) the 1D Haar coefficients of
f1D ; (e) the 1D approximation obtained by reconstruction from the 20 largest Haar
coefficients ; (f) the corresponding square approximated in bandelet.

adapted to the geometric singularities of such an image, reconstruction (b) has
strong ringing artifacts. The adapted reconstruction (c) exhibits fewer such ar-
tifacts since the bandelet basis functions are elongated and follow the geometry.
The segmentation is depicted after the last iteration, together with the chosen
direction θS which closely matches the real geometry. On figure 5, (d/e/f), one
can see a comparison for a natural image containing complex geometric struc-
tures such as edges, junctions and sharp line features. The best bandelet process
is able to resolve these features efficiently.

6 Conclusion

The best basis framework presented in this paper allows to recover signals
with complex structures from random measurements. This approach is successful
for natural sounds and geometric images that contain a broad range of sharp
transitions. Using a dictionary of bases decouples the approximation process from
the redundancy needed for adaptivity and requires the design of a penalization
cost on the set of bases. This lowers the computational burden and the numerical
instabilities. This framework is not restricted to orthogonal bases, although it
is a convenient mathematical way to ensure the compressed sensing recovery
condition.

This best basis approach to sensing and recovery is also a promising avenue
for interactions between biological processing, where a deterministic or chaotic
process is highly probable and signal processing, where randomization has proven
useful to provide universal coding strategies.



(a)

(b)

(c)

(d)

(e)

(f)

Fig. 5. (a/d) original image ; (b/e) compressed sensing reconstruction using the
wavelet basis, n = N/6 (b:PSNR=22.1dB, e:PSNR=23.2dB) ; (c/f) reconstruction
using iteration in a best bandelet basis (c: PSNR=24.3dB, f:PSNR=25.1dB).
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