Abstract
In order to investigate human information processing mechanism systematically, Web intelligence (WI) based portal techniques are required for brain data measurement, management and analysis. Building a brain informatics portal is, in fact, to develop a data mining grid centric multi-layer grid system on the Wisdom Web, on which various data mining agents are deployed, for multi-aspect data analysis. We propose an approach for collecting, modeling, transforming, managing, and mining multiple human brain data obtained from systematic fMRI/EEG experiments. The proposed approach provides a new way in Brain Informatics (BI) for automatic analysis and understanding of human brain data to replace human-expert centric visualization. We attempt to change the perspective of cognitive scientists from a single type of experimental data analysis towards a holistic view at a long-term, global field of vision to understand the principle, models and mechanisms of human information processing system.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Banquet, J.P.: Spectral Analysis of the EEG in Meditation. Electroencephalography and Clinical Neurophysiology 35, 143–151 (1973)
Banfield, J., Raftery, A.: Model-based Gaussian and Non-Gaussian Clustering. Biometrics 49, 803–821 (1993)
Berman, F.: From TeraGrid to Knowledge Grid. CACM 44, 27–28 (2001)
Cannataro, M., Talia, D.: The Knowledge Grid. CACM 46, 89–93 (2003)
Consularo, L.A., Lotufo, R.A., Costa, L.F.: Data Mining Based Modeling of Human Visual Perception. In: Cios, K.J. (ed.) Medical Data Mining and Knowledge Discovery, pp. 403–431. Physica-Verlag, Heidelberg (2001)
Cerutti, S., et al.: A Parametric Method of Identification of Single Trial Event-related Potentials in the Brain. IEEE Trans. Biomed. Eng. 35(9), 701–711 (1988)
Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P.: From Data Mining to Knowledge Discovery: an Overview. In: Advances in Knowledge Discovery and Data Mining, pp. 1–36. MIT Press, Cambridge (1996)
Foster, I., Kesselman, C. (eds.): The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufmann, San Francisco (1999)
Gazzaniga, M.S. (ed.): The Cognitive Neurosciences III. MIT Press, Cambridge (2004)
Handy, T.C.: Event-Related Potentials, A Methods Handbook. MIT Press, Cambridge (2004)
Hornero, R., et al.: A DSP Implementation of Wavelet Transform to Detect Epileptiform Activity in the EEG. In: Proc. 8th Annual International Conference on Signal Processing Applications and Technology, ICAPAT’97, pp. 692–696 (1997)
Hu, J., Zhong, N.: Organizing Multiple Data Sources for Developing Intelligent e-Business Portals. Data Mining and Knowledge Discovery 12(2-3), 127–150 (2006)
Liu, J., et al.: The Wisdom Web: New Challenges for Web Intelligence (WI). Journal of Intelligent Information Systems 20(1), 5–9 (2003)
Liu, J.: Web Intelligence (WI): What Makes Wisdom Web? In: Proc. 18th International Joint Conference on Artificial Intelligence (IJCAI’03), pp. 1596–1601 (2003)
Megalooikonomou, V., Herskovits, E.H.: Mining Structure-Function Associations in a Brain Image Database. In: Cios, K.J. (ed.) Medical Data Mining and Knowledge Discovery, pp. 153–179. Physica-Verlag, Heidelberg (2001)
Motomura, S., Zhong, N., Wu, J.L.: Brain Waves Data Mining for Human Multi-perception Activity Analysis. In: Proc. Inter. Workshop on Advanced Technologies for e-Learning and e-Science (ATELS’04), pp. 65–72 (2004)
Gazzaniga, M.S., Ivry, R., Mangun, G.R.: Cognitive Neuroscience: The Biology of the Mind, 2nd edn. W.W. Norton, New York (2002)
Mitchell, T.M., et al.: Classifying Instantaneous Cognitive States from fMRI Data. In: Proc. American Medical Informatics Association Annual Symposium, pp. 465–469 (2003)
Newell, A., Simon, H.A.: Human Problem Solving. Prentice-Hall, Englewood Cliffs (1972)
Rosen, B.R., Buckner, R.L., Dale, A.M.: Event-related functional MRI: Past, Present, and Future. Proceedings of National Academy of Sciences, USA 95(3), 773–780 (1998)
Sai, Y., Yao, Y.Y., Zhong, N.: Data Analysis and Mining in Ordered Information Tables. In: Proc. 2001 IEEE International Conference on Data Mining (ICDM’01), pp. 497–504. IEEE Computer Society Press, Los Alamitos (2001)
Sternberg, R.J., Lautrey, J., Lubart, T.I.: Models of Intelligence. American Psychological Association (2003)
Su, Y., et al.: A Method of Distributed Problem Solving on the Web. In: Proc. 2005 IEEE/WIC/ACM International Conference on Web Intelligence (WI’05), pp. 42–45. IEEE Computer Society Press, Los Alamitos (2005)
Su, Y., et al.: Distributed Reasoning Based on Problem Solver Markup Language (PSML): A Demonstration through Extended OWL. In: Proc. 2005 IEEE International Conference on e-Technology, e-Commerce and e-Service (EEE’05), pp. 208–213. IEEE Computer Society Press, Los Alamitos (2005)
Tomita, K., Zhong, N., Yamauchi, H.: Coupling Global Semantic Web with Local Information Sources for Problem Solving. In: Proc. First International Workshop on Semantic Web Mining and Reasoning, pp. 66–74 (2004)
Tsukimoto, H., Morita, C.: The Discovery of Rules from Brain Images. In: Arikawa, S., Motoda, H. (eds.) DS 1998. LNCS (LNAI), vol. 1532, pp. 198–209. Springer, Heidelberg (1998)
Zhong, N., Ohsuga, S.: Toward A Multi-Strategy and Cooperative Discovery System. In: Proc. First Int. Conf. on Knowledge Discovery and Data Mining (KDD-95), pp. 337–342. AAAI Press, Menlo Park (1995)
Zhong, N., Ohsuga, S.: Automatic Knowledge Discovery in Larger Scale Knowledge-Data Bases. In: Leondes, C. (ed.) The Handbook of Expert Systems, vol. 4, pp. 1015–1070. Academic Press, London (2001)
Zhong, N., Liu, C., Ohsuga, S.: Dynamically Organizing KDD Process. International Journal of Pattern Recognition and Artificial Intelligence 15(3), 451–473 (2001)
Zhong, N., Dong, J.Z., Ohsuga, S.: Rule Discovery by Soft Induction Techniques. Neurocomputing 36(1–4), 171–204 (2001)
Zhong, N., Liu, J., Yao, Y.Y.: In Search of the Wisdom Web. IEEE Computer 35(11), 27–31 (2002)
Zhong, N., et al.: Gastric Cancer Data Mining with Ordered Information. In: Alpigini, J.J., et al. (eds.) RSCTC 2002. LNCS (LNAI), vol. 2475, pp. 467–478. Springer, Heidelberg (2002)
Zhong, N., Yao, Y.Y., Ohshima, M.: Peculiarity Oriented Multi-Database Mining. IEEE Transaction on Knowlegde and Data Engineering 15(4), 952–960 (2003)
Zhong, N.: Developing Intelligent Portals by Using WI Technologies. In: Li, J.P., et al. (eds.) Wavelet Analysis and Its Applications, and Active Media Technology, vol. 2, pp. 555–567. World Scientific, Singapore (2004)
Zhong, N., et al.: Peculiarity Oriented fMRI Brain Data Analysis for Studying Human Multi-Perception Mechanism. Cognitive Systems Research 5(3), 241–256 (2004)
Zhong, N., et al.: Building a Data Mining Grid for Multiple Human Brain Data Analysis. Computational Intelligence 21(2), 177–196 (2005)
Zhong, N., Motomura, S., Wu, J.L.: Peculiarity Oriented Multi-Aspect Brain Data Analysis for Studying Human Multi-Perception Mechanism. In: Proc. SAINT 2005 Workshops (Workshop 8: Computer Intelligence for Exabyte Scale Data Explosion), pp. 306–309. IEEE Computer Society Press, Los Alamitos (2005)
Zhong, N.: Impending Brain Informatics (BI) Research from Web Intelligence (WI) Perspective. International Journal of Information Technology and Decision Making 5(4), 713–727 (2006)
Zhong, N., Liu, J., Yao, Y.Y.: Envisioning Intelligent Information Technologies (iIT) from the Stand-Point of Web Intelligence (WI). Communications of the ACM 50(3) (2007)
The OGSA-DAI project: http://www.ogsadai.org.uk/
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Zhong, N., Motomura, S. (2007). WI Based Multi-aspect Data Analysis in a Brain Informatics Portal. In: Gorodetsky, V., Zhang, C., Skormin, V.A., Cao, L. (eds) Autonomous Intelligent Systems: Multi-Agents and Data Mining. AIS-ADM 2007. Lecture Notes in Computer Science(), vol 4476. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72839-9_4
Download citation
DOI: https://doi.org/10.1007/978-3-540-72839-9_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72838-2
Online ISBN: 978-3-540-72839-9
eBook Packages: Computer ScienceComputer Science (R0)