Skip to main content

Combination Methodologies of Multi-agent Hyper Surface Classifiers: Design and Implementation Issues

  • Conference paper
Autonomous Intelligent Systems: Multi-Agents and Data Mining (AIS-ADM 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4476))

  • 600 Accesses

Abstract

This paper describes a new framework using intelligent agents for pattern recognition. Based on Jordan Curve Theorem, a universal classification method called Hyper Surface Classifier (HSC) has been studied since 2002. We propose multi-agents based technology to realize the combination of Hyper Surface Classifiers. Agents can imitate human beings’ group decision to solve problems. We use two types of agents: the classifier training agent and the classifier combining agent. Each classifier training agent is responsible to read a vertical slice of the samples and train the local classifier, while the classifier combining agent is designed to combine the classification results of all the classifier training agents. The key of our method is that the sub-datasets for the classifier training agents are obtained by dividing the features rather than by dividing the sample set in distribution environment. Experimental results show that this method has a preferable performance on high dimensional datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. He, Q., Shi, Z.Z., Ren, L.A.: The Classification Method Based on Hyper Surface. In: Proc. 2002 IEEE International Joint Conference on Neural Networks, Las Vegas, pp. 1499–1503 (2002)

    Google Scholar 

  2. He, Q., et al.: A Novel Classification Method Based on Hyper Surface. Int. J. of Mathematical and Computer Modeling 38, 395–407 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. He, Q., Zhao, X.R., Shi, Z.Z.: Classification based on dimension transposition for high dimension data. Soft Computing 11(4), 329–334 (2006)

    Article  Google Scholar 

  4. Vapnik, V.N., Golowich, S., Smola, A.: Support Vector Method for Function Approximation, Regression Estimation, and Signal Processing. In: Mozer, M., Jordan, M., Petsche, T. (eds.) Neural Information Processing Systems, vol. 9, MIT Press, Cambridge (1997)

    Google Scholar 

  5. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1995)

    MATH  Google Scholar 

  6. Fulton, W.: Algebraic topology. Springer, New York (1995)

    MATH  Google Scholar 

  7. Alkoot, F.M., Kittler, J.: Experimental Evaluation of Expert Fusion Strategies. Pattern Recognition Letters 20, 1352–1369 (1999)

    Article  Google Scholar 

  8. Cordella, L.P., et al.: Reliability Parameters to Improve Combination Strategies in Multi-Expert Systems. Pattern Analysis and Applications 2, 205–214 (1999)

    Article  Google Scholar 

  9. Ho, T.K., Hull, J.J., Srihari, S.N.: Decision Combination in Multiple Classifier Systems. IEEE Trans. PAMI 16, 66–75 (1994)

    Google Scholar 

  10. Huang, Y.S., Suen, C.Y.: A Method of Combination of Multiple Experts for the Recognition of Unconstrained Handwritten Numerals. IEEE Trans. PAMI 17, 90–94 (1995)

    Google Scholar 

  11. Ji, C., Ma, S.: Combinations of Weak Classifiers. IEEE Trans. Neural Networks 8, 32–42 (1997)

    Article  Google Scholar 

  12. Kang, H.J., Kim, K., Kim, J.H.: Optimal Approximation of Discrete Probability Distribution with kth-order Dependency and Its Application to Combining Multiple Classifiers. Pattern Recognition Letters 18, 515–523 (1997)

    Article  Google Scholar 

  13. Kang, H.J., Lee, S.W.: Combining Classifiers Based on Minimization of a Bayes Error Rate. In: Proceedings of the 5th International Conference on Document Analysis and Recognition, Fort Collins, Colorado, USA, pp. 124–129 (1999)

    Google Scholar 

  14. Kittler, J.: Combining Classifiers: A Theoretical Framework. Pattern Analysis and Applications 1, 18–27 (1998)

    Article  Google Scholar 

  15. Kittler, J.: On Combining Classifiers. IEEE Trans. PAMI 20, 226–239 (1998)

    Google Scholar 

  16. Lam, L., Suen, C.Y.: Application of Majority Voting to Pattern Recognition: An Analysis of Its Behavior and Performance. IEEE Trans. Systems, Man, and Cybernetics 27, 553–568 (1997)

    Article  Google Scholar 

  17. Rahman, A.F.R., Fairhurst, M.C.: An Evaluation of Multi-expert Configurations for the Recognition of Handwritten Numerals. Pattern Recognition 31, 1255–1273 (1998)

    Article  Google Scholar 

  18. Rahman, F.R., Fairhurst, M.C.: Serial Combination of Multiple Experts: A Unified Evaluation. Pattern Analysis and Applications 2, 292–311 (1999)

    Article  Google Scholar 

  19. Wang, D., et al.: Use of Fuzzy-Logic-Inspired Features to Improve Bacterial Recognition through Classifiers Fusion. IEEE Trans. SMC, Part B 28(4), 583–591 (1998)

    Article  Google Scholar 

  20. Xu, L., Krzyzak, A., Suen, C.Y.: Methods of Combining Multiple Classifiers and Their Application to Handwritten Numeral Recognition. IEEE Trans. Systems, Man, and Cybernetics 22, 418–435 (1992)

    Article  Google Scholar 

  21. Al-Ani, A., Deriche, M.: A New Technique for Combining Multiple Classifiers Using the Dempster-Shafer Theory of Evidence. Journal of Artificial Intelligence Research 17, 333–361 (2002)

    MATH  MathSciNet  Google Scholar 

  22. Suen, C.Y., Lam, L.: Multiple Classifier Combination Methodologies for Different Output Levels. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 52–66. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  23. Lin, S.D., Han, G.Q., Yuan, X.: Information Fusion of Agent Based Heterogeneous Multi-Classifiers. In: Proceedings of the Fourth International Conference on Machine Learning and Cybernetics, Guangzhou, pp. 18–21 (2005)

    Google Scholar 

  24. Gader, P.D., et al.: Pipelined Systems for Recognition of Written Digits in USPS ZIP Codes. In: Proc. U.S. Postal Service Advanced Technology Conf., pp. 539–548 (1990)

    Google Scholar 

  25. Mandler, E., Schuermann, J.: Combining the Classification Results of Independent Classifiers Based on the Dempster/Shafer Theory of Evidence. Pattern Recognition and Artificial Intelligence, 381–393 (1988)

    Google Scholar 

  26. Spanjersberg, A.A.: Combination of Different Systems for the Recognition of Handwritten Digits. In: Proc. 2nd Int. Joint Conf. on Pattern Recognition, Copenhagen, pp. 208–209 (1974)

    Google Scholar 

  27. Shi, Z.Z., et al.: MAGE: An Agent-Oriented Programming Environment. In: Proceedings of the IEEE International Conference on Cognitive Informatics, New York, pp. 250–257 (2004)

    Google Scholar 

  28. Luo, P., et al.: A Heterogeneous Computing System for Data Mining workflows in Multi-Agent Environments. Expert Systems 23, 258–272 (2006)

    Article  Google Scholar 

  29. Zhao, X.R., He, Q., Shi, Z.Z.: HyperSurface Classifiers Ensemble for High Dimensional Data Sets. In: Wang, J., et al. (eds.) ISNN 2006. LNCS, vol. 3971, pp. 1299–1304. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  30. Fu, Y.: Distributed data mining: An overview. IEEE TCDP newsletter (2001)

    Google Scholar 

  31. Cannataro, M., et al.: Distributed data mining on grids: Services, tools, and applications. IEEE Transactions on Systems, Man and Cybernetics 34(6), 2451–2465 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Vladimir Gorodetsky Chengqi Zhang Victor A. Skormin Longbing Cao

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

He, Q., Zhao, XR., Luo, P., Shi, ZZ. (2007). Combination Methodologies of Multi-agent Hyper Surface Classifiers: Design and Implementation Issues. In: Gorodetsky, V., Zhang, C., Skormin, V.A., Cao, L. (eds) Autonomous Intelligent Systems: Multi-Agents and Data Mining. AIS-ADM 2007. Lecture Notes in Computer Science(), vol 4476. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72839-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72839-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72838-2

  • Online ISBN: 978-3-540-72839-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics