Skip to main content

Supervised Segmentation Based on Texture Signatures Extracted in the Frequency Domain

  • Conference paper
Pattern Recognition and Image Analysis (IbPRIA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4477))

Included in the following conference series:

  • 1577 Accesses

Abstract

Texture identification can be a key component in Content Based Image Recognition systems. Although formal definitions of texture vary in the literature, it is commonly accepted that textures are naturally extracted and recognized as such by the human visual system, and that this analysis is performed in the frequency domain. The method presented here employs a discrete Fourier transform in the polar space to extract features, which are then classified with a vector quantizer for supervised segmentation of images into texture regions. Experiments are conducted on a standard database of test problems that show this method compares favorably with the state-of-the-art and improves over previously proposed frequency-based methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tuceryan, M., Jain, A.K.: Texture Analysis. In: Chen, C.H., Pau, L.F., Wang, P.S.P. (eds.) The Handbook of Pattern Recognition and Computer Vision, 2nd edn., pp. 207–248. World Scientific Publishing Co., Singapore (1998)

    Google Scholar 

  2. Clark, A.A., Thomas, B.T., Campbell, N.W., Greenway, P.: Texture Deconvolution for Fourier-Based Analysis of Non-Rectangular Regions. In: BMVC, pp. 193–202 (1999)

    Google Scholar 

  3. Pyun, K., Won, C.S., Lim, J., Gray, R.M.: Texture classification based on multiple Gauss mixture vector quantizer. In: Proc. of ICME, pp. 501–504 (2002)

    Google Scholar 

  4. Aiyer, A., Pyun, K., Huang, Y., O’Brien, D.B., Gray, R.M.: Lloyd Clustering of Gauss Mixture Models for Image Compression and Classification. Signal Processing: Image Communication (2005)

    Google Scholar 

  5. Brodatz, P.: Textures: A Photographic Album for Artists and Designers. Dover, New York (1996)

    Google Scholar 

  6. Randen, T., Husøy, J.H.: Filtering for Texture Classification: A Comparative Study. IEEE Transaction on Pattern Analysis and Machine Intelligence 21(4), 291–310 (1999)

    Article  Google Scholar 

  7. Mäenpää, T., Pietikäinen, M., Ojala, T.: Texture Classification by Multi-Predicate Local Binary Pattern Operators. In: ICPR, pp. 3951–3954 (2000)

    Google Scholar 

  8. Ojala, T., Mäenpää, T., Pietikäinen, M., Viertola, J., Kyllönen, J., Huovinen, S.: Outex – New Framework for Empirical Evaluation of Texture Analysis Algorithms. In: Proc. 16th Int. Conf. on Pattern Recognition, pp. 701–706 (2002)

    Google Scholar 

  9. Ojala, T., Pietikäinen, M., Harwood, D.: A Comparative Study of Texture Measures with Classification Based on Feature Distributions. Pattern Recognition 29, 51–59 (1996)

    Article  Google Scholar 

  10. Blakemore, C.B., Campbell, F.W.: On the existence of neurons in the human visual system selectivity sensitive to the orientation and size of retinal images. Journal of Physiology 203, 237–260 (1969)

    Google Scholar 

  11. Campbell, F.W., Cleland, B.G., Cooper, G.F., Enroth-Cugell, C.: The angular selectivity of visual cortical cells to moving gratings. J. Physiol. 198, 237–250 (1968)

    Google Scholar 

  12. Campbell, F.W., Nachmias, J., Jukes, J.: Spatial frequency discrimination in human vision. J. Opt. Soc. Am. 60, 555–559 (1970)

    Article  Google Scholar 

  13. Maffei, L., Fiorentini, A.: The visual cortex as a spatial frequency analyzer. Vision Res. 13, 1255–1267 (1973)

    Article  Google Scholar 

  14. Maffei, L., Fiorentini, A.: Spatial frequency rows in the striate visual cortex. Vision Res. 17, 257–264 (1977)

    Article  Google Scholar 

  15. de Valois, R.L., Albrecht, D.G., Thorell, L.G.: Spatial frequency selectivity of cells in macaque visual cortex. Vision Res. 22, 545–559 (1982)

    Article  Google Scholar 

  16. Kuwahara, M., Hachimura, K., Eiho, S., Kinoshita, M.: Digital Processing of Biomedical Images, pp. 187–203. Plenum Press, New York (1976)

    Google Scholar 

  17. MeasTxt (1998), http://www.cssip.elec.uq.edu.au/~guy/meastex/meastex.html

  18. MIT Vision and Modeling Group (1998), http://www.media.mit.edu/vismod

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joan Martí José Miguel Benedí Ana Maria Mendonça Joan Serrat

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Di Lillo, A., Motta, G., Storer, J.A. (2007). Supervised Segmentation Based on Texture Signatures Extracted in the Frequency Domain. In: Martí, J., Benedí, J.M., Mendonça, A.M., Serrat, J. (eds) Pattern Recognition and Image Analysis. IbPRIA 2007. Lecture Notes in Computer Science, vol 4477. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72847-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72847-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72846-7

  • Online ISBN: 978-3-540-72847-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics