Abstract
We present in this paper a method for implementing moment functions in a CMOS retina for object localization, and pattern recognition and classification applications. The method is based on the use of binary patterns and it allows the computation of different moment functions such as geometric and Zernike moments of any orders by an adequate choice of the binary patterns. The advantages of the method over other methods described in the literature are that it is particularly suitable for the design of a programmable retina circuit where moment functions of different orders are obtained by simply loading the correct binary patterns into the memory devices implemented on the circuit. The moment values computed by the method are approximate values, but we have verified that in spite of the errors the approximate values are significant enough to be applied to classical shape localization and shape representation and description applications.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Mukundan, R., Ramakrishnan, K.R.: Moment functions in image analysis – Theory and applications. World Scientific, Singapore (1998)
Zhang, D., Lu, G.: Review of shape representation and description techniques. Pattern Recognition 37, 1–19 (2004)
Standley, D.L.: An Object Position and Orientation IC With Embedded Imager. IEEE Journal Of Solid State Circuits 26(12), 1853–1859 (1991)
Yu, N.M., Shibata, T., Ohmi, T.: A real time center of mass tracker circuit implemented by neuron MOS technology. IEEE Trans. on Circuits and Systems 45 (1998)
Cummings, R.E., Gruev, V., Abdel, M.G.: VLSI implementation of motion centroid localization for autonomous navigation. Adv. Neural Inf. Process. Syst. 45 (1998)
Deweerth, S.P.: Analog VLSI Circuits For Stimulus Localization and Centroid. International Journal of Computer Vision 8, 191–202 (1992)
Hu, M.K.: Visual pattern recognition by moment invariants. IRE Trans. on Inf. Theory 8(1), 179–187 (1962)
Pappas, T.N., Allebach, J.P., Neuhoff, D.L.: Model Based Digital Halftonning. IEEE Signal Processing Magazine 20(4), 14–27 (2003)
Floyd, R.W., Steinberg, L.: An adaptative algorithm for spatial grey scale. Proc. of Society for Information Display 17(2), 75–77 (1976)
Nene, S.A., Nayar, S.K., Murase, H.: Columbia Object Image Library (COIL-100). Technical Report CUCS-006-96, University of Columbia (Feb. 1996), http://www1.cs.columbia.edu/CAVE/databases/
Aubreton, O.: Rétines à masques: Utilisation de masques binaires pour l’implantation d’un opérateur de reconnaissance de forme dans une rétine CMOS. Ph.D. thesis, Université de Bourgogne, France (Dec 2004)
Zhang, D., Lu, G.: Review of shape representation and description techniques. Pattern Recognition 37, 1–19 (2004)
Teh, C.H., Chin, R.T.: On image analysis by the methods of moments. IEEE Trans. Pattern Analysis Machine Intelligence 10(4), 496–513 (1988)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Aubreton, O., Lew Yan Voon, L.F.C., Nongaillard, M., Cathebras, G., Lemaitre, C., Lamalle, B. (2007). Hardware Implementation of Moment Functions in a CMOS Retina: Application to Pattern Recognition. In: Martí, J., Benedí, J.M., Mendonça, A.M., Serrat, J. (eds) Pattern Recognition and Image Analysis. IbPRIA 2007. Lecture Notes in Computer Science, vol 4477. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72847-4_40
Download citation
DOI: https://doi.org/10.1007/978-3-540-72847-4_40
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72846-7
Online ISBN: 978-3-540-72847-4
eBook Packages: Computer ScienceComputer Science (R0)