Abstract
A new method is proposed for improving microarray spot segmentation for gene quantification. The method introduces a novel combination of three image processing stages, applied locally to each spot image: i/ Fuzzy C-Means unsupervised clustering, for automatic spot background noise estimation, ii/ power spectrum deconvolution filter design, employing background noise information, for spot image restoration, iii/ Gradient-Vector-Flow (GVF-Snake), for spot boundary delineation. Microarray images used in this study comprised a publicly available dataset obtained from the database of the MicroArray Genome Imaging & Clustering Tool website. The proposed method performed better than the GVF-Snake algorithm (Kullback-Liebler metric: 0.0305 bits against 0.0194 bits) and the SPOT commercial software (pairwise mean absolute error between replicates: 0.234 against 0.303). Application of efficient adaptive spot-image restoration on cDNA microarray images improves spot segmentation and subsequent gene quantification.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alizadeh, A., Eisen, M., Botstein, D., Brown, P.O., Staudt, L.M.: Probing lymphocyte biology by genomic-scale gene expression analysis. J. Clin. Immunol. 18, 373–379 (1998)
Angulo, J., Serra, J.: Automatic analysis of DNA microarray images using mathematical morphology. Bioinformatics 19, 553–562 (2003)
Schena, M.: Microarray biochip technology, 1st edn. Eaton Publishing Company, Westborough (2000)
Balagurunathan, Y., Wang, N., Dougherty, E.R., Nguyen, D., Chen, Y., Bittner, M.L., Trent, J., Carroll, R.: Noise factor analysis for cdna microarrays. J. Biomed Opt. 9, 663–678 (2004)
Ahmed, A.A., Vias, M., Iyer, N.G., Caldas, C., Brenton, J.D.: Microarray segmentation methods significantly influence data precision. Nucleic Acids Res. 32, 50 (2004)
Wang, X.H., Istepanian, R.S., Song, Y.H.: Microarray image enhancement by denoising using stationary wavelet transform. IEEE Trans. Nanobioscience 2, 184–189 (2003)
Lukac, R., Plataniotis, K.N., Smolka, B., Venetsanopoulos, A.N.: Cdna microarray image processing using fuzzy vector filtering framework. Journal of Fuzzy Sets and Systems (Special Issue on Fuzzy Sets and Systems in Bioinformatics) 152(1), 17–35 (2005)
Mastriani, M., Giraldez, A.E.: Microarrays denoising via smoothing of coefficients in wavelet domain. International Journal of Biomedical Sciences 1, 1306–1316 (2006)
Lukac, R., Smolka, B.: Application of the adaptive center-weighted vector median framework for the enhancement of cdna microarray. Int. J. Appl. Math. Comput. Sci. 13, 369–383 (2003)
Daskalakis, A., Cavouras, D., Bougioukos, P., Kostopoulos, S., Argyropoulos, C., Nikiforidis, G.C.: Improving microarray spots segmentation by k-means driven adaptive image restoration. In: Proceedings of the ITAB, Ioannina, Greece (2006)
Arslan, F.T., Grigoryan, A.M.: Alpha-rooting image enhancement by paired splitting-signals. In: Proceedings of the 3rd IEEE International Symposium on Biomedical Imaging: from Macro to Nano, ISBI, Arlington, VA, pp. 968–971 (2006)
Arslan, F.T., Moreno, J.M., Grigoryan, A.M.: New methods of image enhancement. In: Proceedings of the SPIE, the International Conference of SPIE Defense and Security Symposium, Orlando, FL, pp. 225–236 (2005)
http://www.bio.davidson.edu/projects/MAGIC/MAGIC.html Available: via the INTERNET. Accessed
DeRisi, J.L., Iyer, V.R., Brown, P.O.: Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278, 680–686 (1997)
Blekas, K., Galatsanos, N., Likas, A., Lagaris, I.: Mixture model analysis of DNA microarray images. IEEE Trans. Med. Imaging 24, 901–909 (2005)
Bezdec, J.C.: Pattern recognition with fuzzy objective function algorithms. Plenum Press, New York (1981)
Gonzalez, R.C., Woods, R.E.: Digital image processing, 1st edn (1992)
Gradient flow vector active contours. Available: via the INTERNET, http://iacl.ece.jhu.edu/projects/gvf/ Last accessed: 02/02/2007
Kullback, S.: Information theory and statistics, 2nd edn. Dover Publications, Mineola (1968)
Bowman, A.W., Azzalini, A.: Applied smoothing techniques for data analysis. Oxford University Press, Oxford (1997)
Yang, Y.H., Buckley, M., Dudoit, S., Speed, T.: Comparison of methods for image analysis on cdna microarray data. J. Comput. Graph Stat. 11, 108–136 (2002)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Daskalakis, A. et al. (2007). Development of a Cascade Processing Method for Microarray Spot Segmentation. In: MartÃ, J., BenedÃ, J.M., Mendonça, A.M., Serrat, J. (eds) Pattern Recognition and Image Analysis. IbPRIA 2007. Lecture Notes in Computer Science, vol 4477. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72847-4_53
Download citation
DOI: https://doi.org/10.1007/978-3-540-72847-4_53
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72846-7
Online ISBN: 978-3-540-72847-4
eBook Packages: Computer ScienceComputer Science (R0)