Abstract
In this paper we evaluate an automatic segmentation algorithm able to identify the set of rigidly moving points within a deformable object given the 2D measurements acquired by a perspective camera. The method is based on a RANSAC algorithm with guided sampling and an estimation of the fundamental matrices from pairwise frames in the sequence. Once the segmentation of rigid and non-rigid points is available, the set of rigid points could be used to estimate the internal camera calibration parameters, the overall rigid motion and the non-rigid 3D structure.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Costeira, J.P., Kanade, T.: A multibody factorization method for independently moving objects. International Journal of Computer Vision 29(3), 159–179 (1998)
Kanatani, K.: Motion segmentation by subspace separation: Model selection and reliability evaluation. International Journal of Image and Graphics 2(2), 179–197 (2002)
Vidal, R., Hartley, R.I.: Motion segmentation with missing data using powerfactorization and gpca. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, San Diego, California, vol. 2, pp. 310–316 (2004)
Yan, J., Pollefeys, M.: A general framework for motion segmentation: Independent, articulated, rigid, non-rigid, degenerate and non-degenerate. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 94–106. Springer, Heidelberg (2006)
Del Bue, A., Lladó, X., Agapito, L.: Non-rigid face modelling using shape priors. In: Zhao, W., Gong, S., Tang, X. (eds.) AMFG 2005. LNCS, vol. 3723, pp. 97–108. Springer, Heidelberg (2005)
Fischler, M.A., Bolles, R.C.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. In: Fischler, M.A., Firschein, O. (eds.) Readings in Computer Vision: Issues, Problems, Principles, and Paradigms, Los Altos, CA, pp. 726–740 (1987)
Tordoff, B.J., Murray, D.W.: Guided-MLESAC: Faster image transform estimation by using matching priors. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(10), 1523–1535 (2005)
Del Bue, A., Lladó, X., Agapito, L.: Non-rigid metric shape and motion recovery from uncalibrated images using priors. In: Proc. IEEE Conference on Computer Vision and Pattern Recognition, New York, NY (2006)
Lladó, X., Del Bue, A., Agapito, L.: Euclidean reconstruction of deformable structure using a perspective camera with varying intrinsic parameters. In: Proc. International Conference on Pattern Recognition, Hong Kong (2006)
Kim, T., Hong, K.S.: Estimating approximate average shape and motion of deforming objects with a monocular view. International Journal of Pattern Recognition and Artificial Intelligence 19(4), 585–601 (2005)
Xiao, J., Kanade, T.: Uncalibrated perspective reconstruction of deformable structures. In: Proc. 10th International Conference on Computer Vision, Beijing, China (2005)
Hartley, R.I.: In defense of the eight-point algorithm. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(6), 580–593 (1997)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Del Bue, A., Lladó, X., Agapito, L. (2007). Segmentation of Rigid Motion from Non-rigid 2D Trajectories. In: Martí, J., Benedí, J.M., Mendonça, A.M., Serrat, J. (eds) Pattern Recognition and Image Analysis. IbPRIA 2007. Lecture Notes in Computer Science, vol 4477. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72847-4_63
Download citation
DOI: https://doi.org/10.1007/978-3-540-72847-4_63
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72846-7
Online ISBN: 978-3-540-72847-4
eBook Packages: Computer ScienceComputer Science (R0)