Abstract
Recently, hidden Markov models (HMMs) have been found to be very effective in classifying heart sound signals. For the classification based on the HMM, the continuous cyclic heart sound signal needs to be manually segmented to obtain isolated cycles of the signal. However, the manual segmentation will be practically inadequate in real environments. Although, there have been some research efforts for the automatic segmentation, the segmentation errors seem to be inevitable and will result in performance degradation in the classification. To solve the problem of the segmentation, we propose to use the ergodic HMM for the classification of the continuous heart sound signal. In the classification experiments, the proposed method performed successfully with an accuracy of about 99(%) requiring no segmentation information.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Leung, T.S., White, P.R., Collis, W.B., Brown, E., Salmon, A.P.: Acoustic diagnosis of heart diseases. In: Proceedings of the 3rd international conference on acoustical and vibratory surveillance methods and diagnostic techniques, Senlis, France, pp. 389–398 (1998)
Cathers, I.: Neural Network Assisted Cardiac Asculation. Artif. Intell. Med. 7, 53–66 (1995)
Bhatikar, S.R., DeGroff, C., Mahajan, R.L.: A Classifier Based on Artificial Neural Network Approach for Cardiac Auscultation in Pediatrics. Artif. Intell. Med. 33, 251–260 (2005)
Lippmann, R.P.: An Introduction to Computing with Neural Nets. IEEE ASSP Magazine, 4–22 (April 1987)
DeGroff, C., Bhatikar, S., Hertzberg, J., Shandas, R., Valdes-Cruz, L., Mahajan, R.: Artificial neural network-based method of screening heart murmur in children. Circulation 103, 2711–2716 (2001)
Gill, D., Intrator, N., Gavriely, N.: A Probabilistic Model for Phonocardiograms Segmentation Based on Homomorphic Filtering. In: 18th Biennial International EURASIP Conference Biosignal, pp. 87–89 (2006)
Ricke, A.D., Povinelli, R.J., Johnson, M.T.: Automatic segmentation of heart sound signals using hidden Markov models. Computers in Cardiology, 953–956 (September 2005)
Chung, Y.-J.: A Classification Approach for the Heart Sound Signals Using Hidden Markov Models. In: Yeung, D.-Y., Kwok, J.T., Fred, A., Roli, F., de Ridder, D. (eds.) SSPR 2006 and SPR 2006. LNCS, vol. 4109, pp. 375–383. Springer, Heidelberg (2006)
Rabiner, L.R., Wilpon, J.G., Juang, B.H.: A segmental k-means training procedure for speech recognition. IEEE Trans. ASSP, 2033–2045 (December 1990)
Rabiner, L.R.: A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Proceedings of the IEEE 77 (1989)
Mason, D.: Listening to the Heart, Hahnemann University (2000)
Baum, L.E., Petrie, T., Soules, G., Weiss, N.: A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains. Annals of Mathematical Statistics 41, 164–171 (1970)
Lee, K.F.: Automatic Speech Recognition. Kluwer Academic Publishers, Boston (1989)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Chung, YJ. (2007). Classification of Continuous Heart Sound Signals Using the Ergodic Hidden Markov Model. In: MartÃ, J., BenedÃ, J.M., Mendonça, A.M., Serrat, J. (eds) Pattern Recognition and Image Analysis. IbPRIA 2007. Lecture Notes in Computer Science, vol 4477. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72847-4_72
Download citation
DOI: https://doi.org/10.1007/978-3-540-72847-4_72
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72846-7
Online ISBN: 978-3-540-72847-4
eBook Packages: Computer ScienceComputer Science (R0)