Abstract
Magnetic Resonance Spectroscopy (MRS) provides the biochemical composition of a tissue under study. This information is useful for the in-vivo diagnosis of brain tumours. Prior knowledge of the relative position of the organic compound contributions in the MRS suggests the development of a probabilistic mixture model and its EM-based Maximum Likelihood Estimation for binned and truncated data. Experiments for characterizing and classifying Short Time Echo (STE) spectra from brain tumours are reported.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Mierisova, S., Ala-Korpela, M.: MR spectroscopy quantitation: a review of frequency domain methods. NMR Biomed. 14(4), 247–259 (2001)
Vanhamme, L., Sundin, T., Hecke, P.V., Huffel, S.V.: MR spectroscopy quantitation: a review of time-domain methods. NMR Biomed. 14(4), 233–246 (2001)
Tate, A., et al.: Development of a DSS for diagnosis and grading of brain tumours using in vivo magnetic resonance SV spectra. NMR Biomed. 19(4), 411–434 (2006)
McLachlan, G.J., Jones, P.N.: Fitting mixture models to grouped and truncated data via the EM algorithm. Biometrics 44, 571–578 (1988)
Cadez, I.V., et al.: Maximum likelihood estimation of mixture densities for binned and truncated multivariate data. Mach. Learn. 47(1), 7–34 (2002)
Same, A., Ambroise, C., Govaert, G.: A classification EM algorithm for binned data. Computational Statistics and Data Analysis (2005)
Jones, P.N., McLachlan, G.J.: Statistical algorithms: Algorithm AS 254. Applied Statistics 39(2), 273–282 (1990)
Julia-Sape, M., et al.: A multicentre, web-accessible and quality control-checked database of in vivo MRS of brain tumour patients. MAGMA 19(1), 22–33 (2006)
Martin, J.K., Hirschberg, D.S.: Small sample statistics for classification error rates II. Technical Report ICS-TR-96-22 (1996)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Garcia-Gomez, J.M., Robles, M., Van Huffel, S., Juan-Císcar, A. (2007). Modelling of Magnetic Resonance Spectra Using Mixtures for Binned and Truncated Data. In: Martí, J., Benedí, J.M., Mendonça, A.M., Serrat, J. (eds) Pattern Recognition and Image Analysis. IbPRIA 2007. Lecture Notes in Computer Science, vol 4478. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72849-8_34
Download citation
DOI: https://doi.org/10.1007/978-3-540-72849-8_34
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72848-1
Online ISBN: 978-3-540-72849-8
eBook Packages: Computer ScienceComputer Science (R0)