Skip to main content

Dependent Component Analysis: A Hyperspectral Unmixing Algorithm

  • Conference paper
Pattern Recognition and Image Analysis (IbPRIA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4478))

Included in the following conference series:

Abstract

Linear unmixing decomposes a hyperspectral image into a collection of reflectance spectra of the materials present in the scene, called endmember signatures, and the corresponding abundance fractions at each pixel in a spatial area of interest.

This paper introduces a new unmixing method, called Dependent Component Analysis (DECA), which overcomes the limitations of unmixing methods based on Independent Component Analysis (ICA) and on geometrical properties of hyperspectral data.

DECA models the abundance fractions as mixtures of Dirichlet densities, thus enforcing the constraints on abundance fractions imposed by the acquisition process, namely non-negativity and constant sum. The mixing matrix is inferred by a generalized expectation-maximization (GEM) type algorithm. The performance of the method is illustrated using simulated and real data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lillesand, T., Kiefer, R., Chipman, J.: Remote Sensing and Image Interpretation, 5th edn. John Wiley & Sons, Inc., New York (2004)

    Google Scholar 

  2. Keshava, N., Mustard, J.: Spectral unmixing. IEEE Sig. Proc. Mag. 19(1), 44–57 (2002)

    Article  Google Scholar 

  3. Nascimento, J., Dias, J.: Vertex component analysis: A fast algorithm to unmix hyperspectral data. IEEE Trans. Geosci. Rem. Sens. 43(4), 898–910 (2005)

    Article  Google Scholar 

  4. Boardman, J.: Automating spectral unmixing of AVIRIS data using convex geometry concepts. In: JPL Pub. 93-26, AVIRIS Workshop, vol. 1, pp. 11–14 (1993)

    Google Scholar 

  5. Winter, M.: N-findr: an algorithm for fast autonomous spectral end-member determination in hyperspectral data. In: SPIE, vol. 3753, pp. 266–275 (2005)

    Google Scholar 

  6. Tu, T.: Unsupervised signature extraction and separation in hyperspectral images: A noise-adjusted fast independent component analysis approach. Opt. Eng. of SPIE 39(4), 897–906 (2000)

    Google Scholar 

  7. Lennon, M., Mouchot, M., Mercier, G., Hubert-Moy, L.: Spectral unmixing of hyperspectral images with the independent component analysis and wavelet packets. In: Proc. of IEEE IGARSS (2001)

    Google Scholar 

  8. Parra, L., Mueller, K., Spence, C., Ziehe, A., Sajda, P.: Unmixing hyperspectral data. In: Advances in Neural Information Processing Systems, vol. 12, pp. 942–948 (2000)

    Google Scholar 

  9. Nascimento, J., Dias, J.: Does independent component analysis play a role in unmixing hyperspectral data? IEEE Trans. Geosci. Rem. Sens. 43(1), 175–187 (2005)

    Article  Google Scholar 

  10. Attias, H.: Independent factor analysis. Neural Computation 11(4), 803–851 (1999)

    Article  Google Scholar 

  11. Moulines, E., Cardoso, J., Gassiat, E.: Maximum likelihood for blind separation and deconvolution of noisy signals using mixture models. In: Proc. of the IEEE ICASSP, vol. 5, pp. 3617–3620 (1997)

    Google Scholar 

  12. Nascimento, J., Dias, J.: Signal subspace identification in hyperspectral linear mixtures. In: Marques, J.S., Pérez de la Blanca, N., Pina, P. (eds.) IbPRIA 2005. LNCS, vol. 3523, pp. 207–214. Springer, Heidelberg (2005)

    Google Scholar 

  13. McLachlan, G., Peel, D.: Finite Mixture Models. John Wiley & Sons, Inc., New York (2000)

    MATH  Google Scholar 

  14. McLachlan, G., Krishnan, T.: The EM Algorithm and Extensions. John Wiley & Sons, Inc., New York (1996)

    Google Scholar 

  15. Lange, K.: Optimization, 1st edn. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  16. Dias, J.: An EM algorithm for the estimation of dirichlet parameters. Technical report, Instituto de Telecomunicações (2005), http://www.lx.it.pt/~bioucas/

  17. Nascimento, J., Dias, J.: Unmixing Hyperspectral Data: Independent and Dependent Component Analysis. In: Hyperspectral Data Exploitation: Theory and Applications (in press), John Wiley & Sons, Inc., Chichester (2006)

    Google Scholar 

  18. Minka, T.: Estimating a dirichlet distribution. Technical report, M.I.T. (2000)

    Google Scholar 

  19. Swayze, G., Clark, R., Sutley, S., Gallagher, A.: Ground-truthing aviris mineral mapping at cuprite, nevada. JPL Pub. AVIRIS Workshop 1, 47–49 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joan Martí José Miguel Benedí Ana Maria Mendonça Joan Serrat

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Nascimento, J.M.P., Bioucas-Dias, J.M. (2007). Dependent Component Analysis: A Hyperspectral Unmixing Algorithm. In: Martí, J., Benedí, J.M., Mendonça, A.M., Serrat, J. (eds) Pattern Recognition and Image Analysis. IbPRIA 2007. Lecture Notes in Computer Science, vol 4478. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72849-8_77

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72849-8_77

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72848-1

  • Online ISBN: 978-3-540-72849-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics