Skip to main content

Region-Based Pose Tracking

  • Conference paper
Pattern Recognition and Image Analysis (IbPRIA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4478))

Included in the following conference series:

Abstract

This paper introduces a technique for region-based pose tracking without the need to explicitly compute contours. We assume a surface model of a rigid object and at least one calibrated camera view. The goal is to find the pose parameters that optimally fit the model surface to the contour of the object seen in the image. In contrast to conventional contour-based techniques, which acquire the contour to be extracted explicitly from the image, our approach optimizes an energy directly defined on the pose parameters. We show experimental results for rather challenging scenes observed with a monocular and a stereo camera system.

We acknowledge funding by the German Research Foundation under the projects We 2602/5-1 and SO 320/4-2, and the Max-Planck Center for Visual Computing and Communication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abidi, M.A., Chandra, T.: Pose estimation for camera calibration and landmark tracking. In: Proc. International Conf. Robotics and Automation, Cincinnati, vol. 1, pp. 420–426 (1990)

    Google Scholar 

  2. Beveridge, J.: Local Search Algorithms for Geometric Object Recognition: Optimal Correspondence and Pose. PhD thesis, Department of Computer Science, University of Massachusetts, Amherst (May 1993)

    Google Scholar 

  3. Bray, M., Kohli, P., Torr, P.H.S.: poseCut: Simultaneous segmentation and 3D pose estimation of humans using dynamic graph-cuts. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 642–655. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Brox, T., Rosenhahn, B., Weickert, J.: Three-dimensional shape knowledge for joint image segmentation and pose estimation. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds.) DAGM 2005. LNCS, vol. 3663, pp. 109–116. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Brox, T., Weickert, J.: A TV flow based local scale estimate and its application to texture discrimination. Journal of Visual Communication and Image Representation 17(5), 1053–1073 (2006)

    Article  Google Scholar 

  6. Drummond, T., Cipolla, R.: Real-time tracking of multiple articulated structures in multiple views. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 20–36. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  7. Goddard, J.: Pose And Motion Estimation From Vision Using Dual Quaternion-Based Extended Kalman Filtering. PhD thesis, Imaging, Robotics, and Intelligent Systems Laboratory, The University of Tennessee, Knoxville-College of Engineering, Tennessee (1997)

    Google Scholar 

  8. Grimson, W., Lozano–Perez, T., Huttenlocher, D.: Object Recognition by Computer: The Role of Geometric Constraints. MIT Press, Cambridge (1990)

    Google Scholar 

  9. Kriegman, D., Vijayakumar, B., Ponce, J.: Constraints for recognizing and locating curved 3D objects from monocular image features. In: Sandini, G. (ed.) ECCV 1992. LNCS, vol. 588, pp. 829–833. Springer, Heidelberg (1992)

    Google Scholar 

  10. Lowe, D.: Solving for the parameters of object models from image descriptions. In: Proc. ARPA Image Understanding Workshop, College Park, April 1980, pp. 121–127 (1980)

    Google Scholar 

  11. Murray, R.M., Li, Z., Sastry, S.S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton (1994)

    MATH  Google Scholar 

  12. Rosenhahn, B.: Pose Estimation Revisited. PhD thesis, Institute of Computer Science, Chair of Cognitive Systems, University of Kiel, Germany (2003)

    Google Scholar 

  13. Rosenhahn, B., Sommer, G.: Adaptive pose estimation for different corresponding entities. In: Van Gool, L. (ed.) DAGM 2002. LNCS, vol. 2449, pp. 265–273. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  14. Shevlin, F.: Analysis of orientation problems using Plucker lines. In: Proc. 14th International Conference on Pattern Recognition, vol. 1, pp. 685–689. IEEE Computer Society Press, Washington, DC (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joan Martí José Miguel Benedí Ana Maria Mendonça Joan Serrat

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Schmaltz, C. et al. (2007). Region-Based Pose Tracking. In: Martí, J., Benedí, J.M., Mendonça, A.M., Serrat, J. (eds) Pattern Recognition and Image Analysis. IbPRIA 2007. Lecture Notes in Computer Science, vol 4478. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72849-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72849-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72848-1

  • Online ISBN: 978-3-540-72849-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics