Skip to main content

Solving Generalized Maximum Dispersion with Linear Programming

  • Conference paper
Algorithmic Aspects in Information and Management (AAIM 2007)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4508))

Included in the following conference series:

Abstract

The Generalized Maximum Dispersion problem asks for a partition of a given graph into p vertex-disjoint sets, each of them having at most k vertices. The goal is to maximize the total edge-weight of the induced subgraphs. We present the first LP-based approximation algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersson, G.: An approximation algorithm for Max p-Section. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 237–247. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  2. Angluin, D., Valiant, L.G.: Fast Probabilistic Algorithms for Hamiltonian Circuits and Matchings. J. Comput. System Sci. 18(2), 155–193 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  3. Asahiro, Y., Iwama, K., Tamaki, H., Tokuyama, T.: Greedily Finding a Dense Subgraph. J. Algorithms 34(2), 203–221 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Czygrinow, A.: Maximum dispersion problem in dense graphs. Oper. Res. Lett. 27, 223–227 (2000)

    Article  MathSciNet  Google Scholar 

  5. Feige, U., Kortsarz, G., Peleg, D.: The Dense k-Subgraph Problem. Algorithmica 29(3), 410–421 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Feige, U., Langberg, M.: Approximation algorithms for maximization problems arising in graph partitioning. J. Algorithms 41(2), 174–211 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Feige, U., Seltser, M.: On the Densest k-Subgraph Problem. Technical report, Department of Applied Mathematics and Computer Science, The Weizmann Institute, Rehovot (September 1997)

    Google Scholar 

  8. Fekete, S.P., Meijer, H.: Maximum Dispersion and Geometric Maximum Weight Cliques. Algorithmica 38(3), 501–511 (2003)

    Article  MathSciNet  Google Scholar 

  9. Frieze, A., Jerrum, M.: Improved approximation algorithms for MAX k-CUT and MAX BISECTION. Algorithmica 18, 67–81 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Goemans, M.X.: Mathematical programming and approximation algorithms. Lecture given at the Summer School on Approximate Solution of Hard Combinatorial Problems, Udine (September 1996)

    Google Scholar 

  11. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42(6), 1115–1145 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Halperin, E., Zwick, U.: A unified framework for obtaining improved approximation algorithms for maximum graph bisection problems. Random Structures Algorithms 20(3), 382–402 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Han, Q., Ye, Y., Zhang, J.: An improved rounding method and semidefinite programming relaxation for graph partition. Math. Program. 92(3), 509–535 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hassin, R., Rubinstein, S., Tamir, A.: Approximation algorithms for maximum dispersion. Oper. Res. Lett. 21(3), 133–137 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jäger, G., Srivastav, A.: Improved Approximation Algorithms for Maximum Graph Partitioning Problems. J. Comb. Optim. 10(2), 133–167 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Khot, S.: Ruling Out PTAS for Graph Min-Bisection, Densest Subgraph and Bipartite Clique. In: Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 136–145. IEEE Computer Society Press, Los Alamitos (2004)

    Chapter  Google Scholar 

  17. Raghavan, P.: Probabilistic construction of deterministic algorithms: approximating packing integer programs. J. Comput. System Sci. 37(2), 130–143 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ravi, S.S., Rosenkrantz, D.J., Tayi, G.K.: Heuristic and Special Case Algorithms for Dispersion Problems. Oper. Res. 42(2), 299–310 (1994)

    Article  MATH  Google Scholar 

  19. Srivastav, A., Stangier, P.: Algorithmic Chernoff-Hoeffding inequalities in integer programming. Random Structures Algorithms 8(1), 27–58 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Srivastav, A., Wolf, K.: Finding Dense Subgraphs with Semidefinite Programming. In: Jansen, K., Rolim, J.D.P. (eds.) APPROX 1998. LNCS, vol. 1444, pp. 181–191. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ming-Yang Kao Xiang-Yang Li

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Jäger, G., Srivastav, A., Wolf, K. (2007). Solving Generalized Maximum Dispersion with Linear Programming. In: Kao, MY., Li, XY. (eds) Algorithmic Aspects in Information and Management. AAIM 2007. Lecture Notes in Computer Science, vol 4508. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72870-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72870-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72868-9

  • Online ISBN: 978-3-540-72870-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics