Abstract
This paper presents a guided multi-restart search (GMRS) algorithm for scheduling parallel machines in terms of global optimum. GMRS consists of a strategic guided local search phase and a phase that generates a beneficial restart point using the information acquired during the local search. The experimental results show that the proposed algorithm considerably improves the solution within a reasonable time.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kim, C.O., Shin, H.J.: Scheduling jobs on parallel machines: a restricted tabu search approach. International Journal of Advanced Manufacturing Technology 22, 278–287 (2003)
Ovacik, I.M., Uzsoy, R.: Rolling Horizon Procedures for Dynamic Parallel Machine Scheduling with Sequence Dependent Setup Times. International Journal of Production Research 33, 3173–3192 (1995)
Fleurent, C., Glover, F.: Improved Constructive Multistart Strategies for the Quadratic Assignment Problem using Adaptive Memory. INFORMS Journal on Computing 11(2), 189–203 (1999)
Boese, K.D., Kahng, A.B., Muddu, S.: A New Adaptive Multi-Start Technique for Combinatorial Global Optimizations. Operations Research Letters 16(2), 101–113 (1994)
Schoen, F.: Global Optimization Methods for High-Dimensional Problems. European Journal of Operational Research 119, 345–352 (1999)
Merkle, D., Middendorf, M.: Ant Colony Optimization with Global Pheromone Evaluation for Scheduling a Single Machine. Applied Intelligence 18(1), 105–111 (2003)
Ding, L., Yue, Y., Ahmet, K., Jackson, M., Parkin, R.: Global Optimization of a Feature-based Process Sequence Using GA and ANN Techniques. International Journal of Production Research 43(15), 3247–3272 (2005)
Yang, Y.W., Xu, J.F., Soh, C.K.: An Evolutionary Programming Algorithm for Continuous Global Optimization. European Journal of Operational Research 168(2), 354–369 (2005)
Uzsoy, R.: Parallel Machine Scheduling Problem Data Sets (1998), http://palette.ecn.purdue.edu/~uzsoy2/Problems/parallel/parameters.html
Laguna, M., Barnes, J.W., Glover, F.: Tabu Search Methods for Single Machine Scheduling Problems. Journal of Intelligent Manufacturing 2, 63–74 (1991)
Locatelli, M., Schoen, F.: Fast Global Optimization of Difficult Lennard-Jones Clusters. Computational Optimization and Applications 21, 55–70 (2002)
Bean, J.: Genetic Algorithms and Random Keys for Sequencing and Optimization. ORSA Journal on Computing 6, 154–160 (1994)
Spears, W., Dejong, K.: On the Virtues of Parameterized Uniform Crossover. In: Proceedings of the 4th International Conference on Genetic Algorithms, pp. 230–236 (1991)
Sloan Jr., K.R., Tanimoto, S.L.: Progressive Refinement of Raster Images. IEEE Transactions on Computers 28(11), 871–874 (1979)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Shin, H.J. (2007). Global Search Method for Parallel Machine Scheduling. In: Kao, MY., Li, XY. (eds) Algorithmic Aspects in Information and Management. AAIM 2007. Lecture Notes in Computer Science, vol 4508. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72870-2_10
Download citation
DOI: https://doi.org/10.1007/978-3-540-72870-2_10
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72868-9
Online ISBN: 978-3-540-72870-2
eBook Packages: Computer ScienceComputer Science (R0)