Skip to main content

Significance-Driven Graph Clustering

  • Conference paper
Algorithmic Aspects in Information and Management (AAIM 2007)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4508))

Included in the following conference series:

Abstract

Modularity, the recently defined quality measure for clusterings, has attained instant popularity in the fields of social and natural sciences. We revisit the rationale behind the definition of modularity and explore the founding paradigm. This paradigm is based on the trade-off between the achieved quality and the expected quality of a clustering with respect to networks with similar intrinsic structure. We experimentally evaluate realizations of this paradigm systematically, including modularity, and describe efficient algorithms for their optimization. We confirm the feasibility of the resulting generality by a first systematic analysis of the behavior of these realizations on both artificial and on real-world data, arriving at remarkably good results of community detection.

This work was partially supported by the DFG under grants WA 654/14-3 and by EU under grant DELIS (contract no. 001907) and CREEN project (contract no. 012684).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gaertler, M.: Clustering. In: Brandes, U., Erlebach, T. (eds.) Network Analysis. LNCS, vol. 3418, pp. 178–215. Springer, Heidelberg (2005)

    Google Scholar 

  2. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69 (2004)

    Google Scholar 

  3. Newman, M.E.J.: A fast algorithm for detecting community structure in networks. Technical report, Department of Physics and Center for the Study of Complex Systems, University of Michigan (2003)

    Google Scholar 

  4. Fortunato, S., Barthelemy, M.: Resolution Limit in Community Detection. arXiv.org physics/0607100 (2006)

    Google Scholar 

  5. Ziv, E., Middendorf, M., Wiggins, C.: Information-Theoretic Approach to Network Modularity. Phys. Rev. E 71 (2005)

    Google Scholar 

  6. Muff, S., Rao, F., Caflisch, A.: Local Modularity Measure for Network Clusterizations. Phys. Rev. E 72 (2005)

    Google Scholar 

  7. Fine, P., Paolo, E.D., Philippides, A.: Spatially Constrained Networks and the Evolution of Modular Control Systems. In: 9th Intl. Conference on the Simulation of Adaptive Behavior, SAB (2006)

    Google Scholar 

  8. Newman, M.E.J.: Fast Algorithm for Detecting Community Structure in Networks. Physical Review E 69 (2004)

    Google Scholar 

  9. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Phys. Rev. E 70 (2004)

    Google Scholar 

  10. Newman, M.: Modularity and Community Structure in Networks. Proceedings of the National Academy of Sciences, 8577–8582 (2005)

    Google Scholar 

  11. White, S., Smyth, P.: A Spectral Clustering Approach to Finding Communities in Graph. In: SIAM Data Mining Conference (2005)

    Google Scholar 

  12. Guimerà, R., Sales-Pardo, M., Amaral, L.A.N.: Modularity from Fluctuations in Random Graphs and Complex Networks. Physical Review E 70 (2004)

    Google Scholar 

  13. Reichardt, J., Bornholdt, S.: Statistical Mechanics of Community Detection. arXiv.org cond-mat/0603718 (2006)

    Google Scholar 

  14. Duch, J., Arenas, A.: Community Detection in Complex Networks using Extremal Optimization. Physical Review E 72 (2005)

    Google Scholar 

  15. Brandes, U., Delling, D., Gaertler, M., Görke, R., Hoefer, M., Nikoloski, Z., Wagner, D.: Maximizing modularity is hard, arxiv preprint (2006), http://arxiv.org/abs/physics/0608255

  16. van Dongen, S.M.: Graph Clustering by Flow Simulation. PhD thesis, University of Utrecht (2000)

    Google Scholar 

  17. Coffin, M., Saltzmann, M.J.: Statistical analysis of computational tests of algorithms and heuristics. INFORMS Journal on Computing 12 (2000)

    Google Scholar 

  18. Newman, M.: Analysis of Weighted Networks. Technical report, Cornell University, Santa Fe Institute, University of Michigan (2004)

    Google Scholar 

  19. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very large networks. Technical report, University of New Mexico, University of Michigan (2004)

    Google Scholar 

  20. Brodal, G.S., Jacob, R.: Dynamic planar convex hull. In: FOCS, pp. 617–626 (2002)

    Google Scholar 

  21. Brandes, U., Gaertler, M., Wagner, D.: Experiments on Graph Clustering Algorithms. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 568–579. Springer, Heidelberg (2003)

    Google Scholar 

  22. Zachary, W.: An information flow model for conflict and fission in small groups. Journal of Anthropological Research 33, 452–473 (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ming-Yang Kao Xiang-Yang Li

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Gaertler, M., Görke, R., Wagner, D. (2007). Significance-Driven Graph Clustering. In: Kao, MY., Li, XY. (eds) Algorithmic Aspects in Information and Management. AAIM 2007. Lecture Notes in Computer Science, vol 4508. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72870-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72870-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72868-9

  • Online ISBN: 978-3-540-72870-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics