Abstract
In this paper, we present a new and efficient algorithm for solving the LCS problem for two strings. Our algorithm runs in \(O(\mathcal R\log\log n + n)\) time, where \(\mathcal R\) is the total number of ordered pairs of positions at which the two strings match.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arlazarov, V.L., Dinic, E.A., Kronrod, M.A., Faradzev, I.A.: On economic construction of the transitive closure of a directed graph (english translation). Soviet Math. Dokl. 11, 1209–1210 (1975)
Arslan, A.N., Egecioglu, Ö.: Algorithms for the constrained longest common subsequence problems. Int. J. Found. Comput. Sci. 16(6), 1099–1109 (2005)
Bender, M.A., Farach-Colton, M.: The lca problem revisited. In: Gonnet, G.H., Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg (2000)
Bergroth, L., Hakonen, H., Raita, T.: A survey of longest common subsequence algorithms. In: SPIRE, pp. 39–48 (2000)
Crochemore, M., Landau, G.M., Ziv-Ukelson, M.: A sub-quadratic sequence alignment algorithm for unrestricted cost matrices. In: Symposium of Discrete Algorithms (SODA), pp. 679–688 (2002)
Gabow, H., Bentley, J., Tarjan, R.: Scaling and related techniques for geometry problems. In: STOC, pp. 135–143 (1984)
Hadlock, F.: Minimum detour methods for string or sequence comparison. Congressus Numerantium 61, 263–274 (1988)
Hirschberg, D.S.: Algorithms for the longest common subsequence problem. J. ACM 24(4), 664–675 (1977)
Hunt, J.W., Szymanski, T.G.: A fast algorithm for computing longest subsequences. Commun. ACM 20(5), 350–353 (1977)
Jiang, T., Li, M.: On the approximation of shortest common supersequences and longest common subsequences. SIAM Journal of Computing 24(5), 1122–1139 (1995)
Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Problems in Information Transmission 1, 8–17 (1965)
Ma, B., Zhang, K.: On the longest common rigid subsequence problem. In: Apostolico, A., Crochemore, M., Park, K. (eds.) CPM 2005. LNCS, vol. 3537, pp. 11–20. Springer, Heidelberg (2005)
Maier, D.: The complexity of some problems on subsequences and supersequences. Journal of the ACM 25(2), 322–336 (1978)
Masek, W.J., Paterson, M.: A faster algorithm computing string edit distances. J. Comput. Syst. Sci. 20(1), 18–31 (1980)
Myers, E.W.: An o(nd) difference algorithm and its variations. Algorithmica 1(2), 251–266 (1986)
Nakatsu, N., Kambayashi, Y., Yajima, S.: A longest common subsequence algorithm suitable for similar text strings. Acta Inf. 18, 171–179 (1982)
Rahman, M.S., Iliopoulos, C.S.: Algorithms for computing variants of the longest common subsequence problem. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 399–408. Springer, Heidelberg (2006)
Tsai, Y.-T.: The constrained longest common subsequence problem. Inf. Process. Lett. 88(4), 173–176 (2003)
van Emde Boas, P.: Preserving order in a forest in less than logarithmic time and linear space. Information Processing Letters 6, 80–82 (1977)
Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. J. ACM 21(1), 168–173 (1974)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Rahman, M.S., Iliopoulos, C.S. (2007). A New Efficient Algorithm for Computing the Longest Common Subsequence. In: Kao, MY., Li, XY. (eds) Algorithmic Aspects in Information and Management. AAIM 2007. Lecture Notes in Computer Science, vol 4508. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72870-2_8
Download citation
DOI: https://doi.org/10.1007/978-3-540-72870-2_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72868-9
Online ISBN: 978-3-540-72870-2
eBook Packages: Computer ScienceComputer Science (R0)