Skip to main content

A New Efficient Algorithm for Computing the Longest Common Subsequence

  • Conference paper
Algorithmic Aspects in Information and Management (AAIM 2007)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4508))

Included in the following conference series:

Abstract

In this paper, we present a new and efficient algorithm for solving the LCS problem for two strings. Our algorithm runs in \(O(\mathcal R\log\log n + n)\) time, where \(\mathcal R\) is the total number of ordered pairs of positions at which the two strings match.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arlazarov, V.L., Dinic, E.A., Kronrod, M.A., Faradzev, I.A.: On economic construction of the transitive closure of a directed graph (english translation). Soviet Math. Dokl. 11, 1209–1210 (1975)

    Google Scholar 

  2. Arslan, A.N., Egecioglu, Ö.: Algorithms for the constrained longest common subsequence problems. Int. J. Found. Comput. Sci. 16(6), 1099–1109 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bender, M.A., Farach-Colton, M.: The lca problem revisited. In: Gonnet, G.H., Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  4. Bergroth, L., Hakonen, H., Raita, T.: A survey of longest common subsequence algorithms. In: SPIRE, pp. 39–48 (2000)

    Google Scholar 

  5. Crochemore, M., Landau, G.M., Ziv-Ukelson, M.: A sub-quadratic sequence alignment algorithm for unrestricted cost matrices. In: Symposium of Discrete Algorithms (SODA), pp. 679–688 (2002)

    Google Scholar 

  6. Gabow, H., Bentley, J., Tarjan, R.: Scaling and related techniques for geometry problems. In: STOC, pp. 135–143 (1984)

    Google Scholar 

  7. Hadlock, F.: Minimum detour methods for string or sequence comparison. Congressus Numerantium 61, 263–274 (1988)

    MathSciNet  Google Scholar 

  8. Hirschberg, D.S.: Algorithms for the longest common subsequence problem. J. ACM 24(4), 664–675 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  9. Hunt, J.W., Szymanski, T.G.: A fast algorithm for computing longest subsequences. Commun. ACM 20(5), 350–353 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  10. Jiang, T., Li, M.: On the approximation of shortest common supersequences and longest common subsequences. SIAM Journal of Computing 24(5), 1122–1139 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Problems in Information Transmission 1, 8–17 (1965)

    Google Scholar 

  12. Ma, B., Zhang, K.: On the longest common rigid subsequence problem. In: Apostolico, A., Crochemore, M., Park, K. (eds.) CPM 2005. LNCS, vol. 3537, pp. 11–20. Springer, Heidelberg (2005)

    Google Scholar 

  13. Maier, D.: The complexity of some problems on subsequences and supersequences. Journal of the ACM 25(2), 322–336 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  14. Masek, W.J., Paterson, M.: A faster algorithm computing string edit distances. J. Comput. Syst. Sci. 20(1), 18–31 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  15. Myers, E.W.: An o(nd) difference algorithm and its variations. Algorithmica 1(2), 251–266 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  16. Nakatsu, N., Kambayashi, Y., Yajima, S.: A longest common subsequence algorithm suitable for similar text strings. Acta Inf. 18, 171–179 (1982)

    MATH  MathSciNet  Google Scholar 

  17. Rahman, M.S., Iliopoulos, C.S.: Algorithms for computing variants of the longest common subsequence problem. In: Asano, T. (ed.) ISAAC 2006. LNCS, vol. 4288, pp. 399–408. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Tsai, Y.-T.: The constrained longest common subsequence problem. Inf. Process. Lett. 88(4), 173–176 (2003)

    Article  Google Scholar 

  19. van Emde Boas, P.: Preserving order in a forest in less than logarithmic time and linear space. Information Processing Letters 6, 80–82 (1977)

    Article  MATH  Google Scholar 

  20. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. J. ACM 21(1), 168–173 (1974)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Ming-Yang Kao Xiang-Yang Li

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Rahman, M.S., Iliopoulos, C.S. (2007). A New Efficient Algorithm for Computing the Longest Common Subsequence. In: Kao, MY., Li, XY. (eds) Algorithmic Aspects in Information and Management. AAIM 2007. Lecture Notes in Computer Science, vol 4508. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72870-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72870-2_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72868-9

  • Online ISBN: 978-3-540-72870-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics