Skip to main content

Pattern Recognition for Multimedia Content Analysis

  • Chapter
Multimedia Retrieval

Part of the book series: Data-Centric Systems and Applications ((DCSA))

  • 1061 Accesses

Abstract

This chapter looks at the basics of recognizing patterns in multimedia content. Our aim is twofold: first, to give an introduction to some of the general principles behind the various methods of pattern recognition, and second, to show what role these methods play in multimedia content analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hidden Markov Models and the Baum-Welch Algorithm. In Lance Pérez, editor, IEEE Information Theory Newsletter, volume 53, December 2003.

    Google Scholar 

  2. Special Issue on Variable and Feature Selection, JMLR, 2003. http://jmlr.csail.mit.edu/papers/special/feature03.html.

    Google Scholar 

  3. Kobus Barnard and Keiji Yanai. Mutual information of words and pictures, 2006. Information Theory and Applications Inaugural Workshop, http://kobus.ca/research/publications/ita-2006.pdf.

    Google Scholar 

  4. M.S. Bazaraa, H.D. Sherali, and C.M. Shetty. Nonlinear Programming — Theory and Algorithms. Wiley, 1979, 3rd ed. 2006.

    Google Scholar 

  5. Pavel Berkhin. Survey of clustering data mining techniques. Technical report, Accrue Software, San Jose, CA, 2002. http://www.accrue.com/products/rp_cluster_review.pdf.

    Google Scholar 

  6. Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, November 1995.

    Google Scholar 

  7. Avrim L. Blum and Pat Langley. Selection of relevant features and examples in machine learning. Artif. Intell., 97(1–2):245–271, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  8. Christian Böhm, Stefan Berchtold, and Daniel A. Keim. Searching in high-dimensional spaces: Index structures for improving the performance of multimedia databases. ACM Comput. Surv., 33(3):322–373, 2001.

    Article  Google Scholar 

  9. L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Wadsworth and Brooks/Cole, 1984.

    Google Scholar 

  10. Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W. Furnas, and Richard A. Harshman. Indexing by latent semantic analysis. Journal of the American Society of Information Science, 41(6):391–407, 1990.

    Article  Google Scholar 

  11. I. Dhillon and D. Modha. Cactus-clustering categorical data using summaries. In Proceedings of Largescale Parallel KDD Systems Workshop, ACM SIGKDD, pages 245–260. ACM Press, 1999.

    Google Scholar 

  12. R. Duda, P. Hart, and Stork D. Pattern Classification. Wiley, 2001.

    Google Scholar 

  13. D. Fisher. Knowledge acquisition via incremental conceptual clustering. Machine Learning, (2):139–175, 1987.

    Google Scholar 

  14. Imola Fodor. A survey of dimension reduction techniques, 2002.

    Google Scholar 

  15. George Forman. An extensive empirical study of feature selection metrics for text classification. Journal of Machiche Learning Research, 3:1289–1305, 2003.

    Article  MATH  Google Scholar 

  16. Y. Freund and R. Schapire. A short introduction to boosting, 1999. J. Japan. Soc. for Artif. Intel. 14(5) (1999), 771–780. 11, citeseer.ist.psu.edu/freund99short.html.

    Google Scholar 

  17. Yoav Freund and Robert E. Schapire. A decision-theoretic generalization of online learning and an application to boosting. J. Comput. Syst. Sci., 55(1):119–139, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  18. Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. Cure: an efficient clustering algorithm for large databases. SIGMOD Rec., 27(2):73–84, 1998.

    Article  Google Scholar 

  19. Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. ROCK: A robust clustering algorithm for categorical attributes. Information Systems, 25(5):345–366, 2000.

    Article  Google Scholar 

  20. Isabelle Guyon and Andrè Elisseeff. An introduction to variable and feature selection. J. Mach. Learn. Res., 3:1157–1182, 2003.

    Article  MATH  Google Scholar 

  21. Isabelle Guyon, Jason Weston, Stephen Barnhill, and Vladimir Vapnik. Gene selection for cancer classification using support vector machines. Machine Learning, 46(1–3):389–422, 2002.

    Article  MATH  Google Scholar 

  22. Y. Hastie, R. Tibshirani, and J. Friedman. Elements of Statistical Learning — Datamining, Inference, and Prediction. Springer, 2001, 3rd ed. 2003.

    Google Scholar 

  23. A.G. Hauptmann. Towards a large scale concept ontology for broadcast video. In Proceedings of the International Conference on Image and Video Retrieval (CIVR 2004), Dublin, Ireland, pages 674–675, 2004.

    Google Scholar 

  24. F. Höppner, F. Klawonn, R. Kruse, and T. Runkler. Fuzzy Cluster Analysis. Wiley, 1999.

    Google Scholar 

  25. H. Hotelling. Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 24(8):417–441, 1933.

    Article  Google Scholar 

  26. A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: a review. ACM Comput. Surv., 31(3):264–323, 1999.

    Article  Google Scholar 

  27. George Karypis, Eui-Hong (Sam) Han, and Vipin Kumar NEWS. Chameleon: Hierarchical clustering using dynamic modeling. Computer, 32(8):68–75, 1999.

    Article  Google Scholar 

  28. M.J. Kearns and U.V. Vazirani. An Introduction to Computational Learning Theory. MIT Press, 1994.

    Google Scholar 

  29. Ron Kohavi and George H. John. Wrappers for feature subset selection. Artificial Intelligence, 97(1–2):273–324, 1997.

    Article  MATH  Google Scholar 

  30. O. Chapelle J. Weston Lal, T. N. and A. Elisseeff. Embedded Methods. Feature Extraction, Foundations and Applications, pages 137–165. Springer-Verlag, Berlin, Heidelberg, Germany, 2006.

    Google Scholar 

  31. Aleix M. Martinez and Avinash C. Kak. PCA versus LDA. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(2):228–233, 2001.

    Article  Google Scholar 

  32. G. McLachlan and T. Krishnan. The EM Algorithm and Extensions. Marcel Dekker, 1997.

    Google Scholar 

  33. Ron Meir and Gunnar Rätsch. An introduction to boosting and leveraging, pages 118–183. Springer-Verlag New York, Inc., New York, NY, USA, 2003.

    Google Scholar 

  34. M.N. Murty and G. Krishna. A computationally efficient technique for data clustering. Pattern Recognition, 12:153–158, 1980.

    Article  Google Scholar 

  35. C.F. Olson. Parallel Algorithms for Hierarchical Clustering. Parallel Computing, 21(28):1313–1325, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  36. Ross J. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc., 1993.

    Google Scholar 

  37. L. Rabiner. A tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. In Proceedings of the IEEE, volume 77, pages 257–286, February 1989.

    Article  Google Scholar 

  38. Robert E. Schapire. The strength of weak learnability. Mach. Learn., 5(2):197–227, 1990.

    Google Scholar 

  39. B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge, MA, 2002.

    Google Scholar 

  40. Hervé Stoppiglia, Gérard Dreyfus, Rémi Dubois, and Yacine Oussar. Ranking a random feature for variable and feature selection. Journal of Machine Learning Research, 3:1399–1414, 2003.

    Article  MATH  Google Scholar 

  41. K. Torkkola. Linear discriminant analysis in document classification, 2001. In: IEEE ICDM-2001 Workshop on Text Mining (TextDM’2001), San Jose, CA (2001), citeseer.ist.psu.edu/torkkola01linear.html.

    Google Scholar 

  42. Kari Torkkola. Feature extraction by non parametric mutual information maximization. Journal of Machine Learning Research, 3:1415–1438, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  43. M. A. Turk and A. P. Pentland. Face recognition using eigenfaces. In Computer Vision and Pattern Recognition, 1991. Proceedings CVPR’ 91., IEEE Computer Society Conference on, pages 586–591, 1991.

    Google Scholar 

  44. David H. Wolpert. The lack of A priori distinctions between learning algorithms. Neural Computation, 8(7):1341–1390, 1996.

    Article  Google Scholar 

  45. Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch: an efficient data clustering method for very large databases. SIGMOD Rec., 25(2):103–114, 1996.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ranguelova, E., Huiskes, M. (2007). Pattern Recognition for Multimedia Content Analysis. In: Blanken, H.M., Blok, H.E., Feng, L., de Vries, A.P. (eds) Multimedia Retrieval. Data-Centric Systems and Applications. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72895-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72895-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72894-8

  • Online ISBN: 978-3-540-72895-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics