Skip to main content

A Correspondence Measure for Graph Matching Using the Discrete Quantum Walk

  • Conference paper
Book cover Graph-Based Representations in Pattern Recognition (GbRPR 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4538))

Abstract

In this paper we consider how coined quantum walks can be applied to graph matching problems. The matching problem is abstracted using an auxiliary graph that connects pairs of vertices from the graphs to be matched by way of auxiliary vertices. A coined quantum walk is simulated on this auxiliary graph and the quantum interference on the auxiliary vertices indicates possible matches. When dealing with graphs for which there is no exact match, the interference amplitudes together with edge consistencies are used to define a consistency measure. We have tested the algorithm on graphs derived from the NCI molecule database and found it to significantly reduce the space of possible matchings thereby allowing the graphs to be matched directly. An analysis of the quantum walk in the presence of structural errors between graphs is used as the basis of the consistency measure. We test the performance of this measure on graphs derived from images in the COIL-100 database.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. US National Cancer Institute Database (2006), http://resresources.nci.nih.gov/database.cfm?id=1231

  2. Aharonov, D., Ambainis, A., Kempe, J., Vazirani, U.: A fast quantum mechanical algorithm for database search. In: Proc. 28th ACM Symp on Theory of Computation, pp. 50–59. ACM Press, New York (1996)

    Google Scholar 

  3. Barrow, H.G., Burstall, R.M.: Subgraph isomorphism, matching relational structures and maximal cliques. Information Processing Letters 4(4), 83–84 (1976)

    Article  MATH  Google Scholar 

  4. Brin, S., Page, L.: The anatomy of a large-scale hypertextual Web search engine. Computer Networks and ISDN Systems 30(1–7), 107–117 (1998)

    Article  Google Scholar 

  5. Emms, D., Hancock, E., Severini, S., Wilson, R.C.: A matrix representation of graphs and its spectrum as a graph invariantn. Electronic Journal of Combinatorics 13(1), R34 (2006)

    Google Scholar 

  6. Emms, D., Severini, S., Wilson, R.C., Hancock, E.: Coined quantum walks lift the co-spectrality of graphs and trees. In: Rangarajan, A., Vemuri, B., Yuille, A.L. (eds.) EMMCVPR 2005. LNCS, vol. 3757, pp. 332–345. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Gori, M., Maggini, M., Sarti, L.: Graph matching using random walks. In: IEEE 17th ICPR, August 2004 (2004)

    Google Scholar 

  8. Grover, L.: A fast quantum mechanical algorithm for database search. In: STOC ’96: Proc. 28th ACM Theory of computing, pp. 212–219. ACM Press, New York (1996)

    Google Scholar 

  9. Harris, C., Stephens, M.: A combined corner and edge detector. In: Proc. of 4th Alvey Vision Conference, Manchester, vol. 15, pp. 147–151 (1988)

    Google Scholar 

  10. Kempe, J.: Quantum random walks – an introductory overview. Contemporary Physics 44(4), 307–327 (2003)

    Article  MathSciNet  Google Scholar 

  11. Meila, M., Shi, J.: A random walks view of spectral segmentation (2001)

    Google Scholar 

  12. Nadler, B., Lafon, S., Coifman, R., Kevrekidis, I.: Diffusion maps, spectral clustering and eigenfunctions of fokker-planck operators. In: Advances in Neural Information Processing Systems 18, MIT Press, Cambridge (2006)

    Google Scholar 

  13. Nene, S.A., Nayar, S.K., Murase, H.: Columbia object image library (coil-100) (1996)

    Google Scholar 

  14. Nielson, M., Chuang, I.: Quantum Computing and Quantum Information. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  15. Robles-Kelly, A., Hancock, E.: Graph edit distance from spectral seriation. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 365–378 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Francisco Escolano Mario Vento

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Emms, D., Hancock, E.R., Wilson, R.C. (2007). A Correspondence Measure for Graph Matching Using the Discrete Quantum Walk. In: Escolano, F., Vento, M. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2007. Lecture Notes in Computer Science, vol 4538. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72903-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72903-7_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72902-0

  • Online ISBN: 978-3-540-72903-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics