Skip to main content

Effects of Geometry and Architecture on Re-entrant Scroll Wave Dynamics in Human Virtual Ventricular Tissues

  • Conference paper
Functional Imaging and Modeling of the Heart (FIMH 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4466))

Abstract

We examine the effects of cardiac geometry and architecture on re-entrant scroll wave dynamics by quantifying the scroll wave filament in two biophysically-detailed heterogeneous models of the human left ventricular free wall – a simple cuboid model and a wedge model constructed using DT-MRI data. For any given geometry, changing the architecture results in changes to the filament meander pattern, increases in filament length, changes to the filament curvature and local filament twist, and increases in the maximum twist along a single filament. Changes to the geometry also affect scroll wave dynamics, mainly due to the size of the tissue. We conclude that such differences in re-entrant scroll wave dynamics should be taken into account when interpreting results from simulations that use simple cardiac geometries and architectures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jalife, J.: Ventricular fibrillation: mechanisms of initiation and maintenance. Ann. Rev. Physiol. 62, 25–50 (2000)

    Article  Google Scholar 

  2. Clayton, R.H., Zhuchkova, E.A., Panfilov, A.V.: Phase singularities and filaments: simplifying complexity in computational models of ventricular fibrillation. Prog. Biophys. Mol. Biol. 90, 378–398 (2006)

    Article  Google Scholar 

  3. Efimov, I.R., Nikolski, V.P., Salama, G.: Optical imaging of the heart. Circ. Res. 95, 21–33 (2004)

    Article  Google Scholar 

  4. Evans, F.G, Gray, R.A.: Shock-induced epicardial and endocardial virtual electrodes leading to ventricular fibrillation via reentry, graded responses, and transmural activation. J. Cardiovasc. Electrophysiol. 15, 79–87 (2004)

    Article  Google Scholar 

  5. Bernus, O., Wellner, M., Mironov, S.F., Pertsov, A.M.: Simulation of voltage-sensitive optical signals in three-dimensional slabs of cardiac tissue: application to transillumination and coaxial imaging methods. Phys. Med. Biol. 50, 215–229 (2005)

    Article  Google Scholar 

  6. Benson, A.P., Halley, G., Li, P., Tong, W.C., Holden, A.V.: Virtual cell and tissue dynamics of ectopic activation of the ventricles. Chaos 17, 015105 (2007)

    Google Scholar 

  7. Benson, A.P., Aslanidi, O.V., Zhang, H., Holden, A.V.: The canine virtual ventricles: a platform for dissecting pharmacological effects on propagation and arrhythmogenesis. Prog. Biophys. Mol. Biol. (to appear)

    Google Scholar 

  8. Clayton, R.H., Holden, A.V.: Propagation of normal beats and re-entry in a computational model of ventricular cardiac tissue with regional differences in action potential shape and duration. Prog. Biophys. Mol. Biol. 85, 473–499 (2004)

    Article  Google Scholar 

  9. Clayton, R.H., Holden, A.V.: A method to quantify the dynamics and complexity of re-entry in computational models of ventricular fibrillation. Phys. Med. Biol. 47, 225–238 (2002)

    Article  Google Scholar 

  10. Gilbert, S.H., Benson, A.P., Li, P., Holden, A.V.: Regional localisation of left ventricular sheet structure: integration with current models of cardiac fibre, sheet and band structure. J. Cardio-thoracic Surgery (to appear)

    Google Scholar 

  11. LeGrice, I.J., Smaill, B.H., Chai, L.Z., Edgar, S.G., Gavin, J.B., Hunter, P.J.: Laminar structure of the heart: ventricular myocyte arrangement and connective tissue architecture in the dog. Am. J. Physiol. 269, H571–H582 (1995)

    Google Scholar 

  12. Basser, P.J., Mattiello, J., LeBihan, D.: MR diffusion tensor spectroscopy and imaging. Biophys. J. 66, 259–267 (1994)

    Article  Google Scholar 

  13. Hsu, E.W., Muzikant, A.L., Matulevicius, S.A., Penland, R.C., Henriquez, C.S.: Magnetic resonance myocardial fiber-orientation mapping with direct histological correlation. Am. J. Physiol. 247, H1627–H1634 (1998)

    Google Scholar 

  14. Scollan, D.F., Holmes, A., Winslow, R.L., Forder, J.: Histological validation of myocardial microstructure obtained from diffusion tensor magnetic resonance imaging. Am. J. Physiol. 275, H2308–H2318 (1998)

    Google Scholar 

  15. Holmes, A.A., Scollan, D.F., Winslow, R.L.: Direct histological validation of diffusion tensor MRI in formaldehyde-fixed myocardium. Magn. Res. Med. 44, 157–161 (2000)

    Article  Google Scholar 

  16. Helm, P.A., Tseng, H.-J., Younes, L., McVeigh, E.R., Winslow, R.L.: Ex vivo 3D diffusion tensor imaging and quantification of cardiac laminar structure. Magn. Reson. Med. 54, 850–859 (2005)

    Article  Google Scholar 

  17. ten Tusscher, K.H.W.J., Noble, D., Noble, P.J., Panfilov, A.V.: A model for human ventricular tissue. Am. J. Physiol. 286, H1573–H1589 (2004)

    Google Scholar 

  18. Fenon, F., Karma, A.: Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: filament instability and fibrillation. Chaos 8, 20–47 (1998)

    Article  Google Scholar 

  19. Colli Franzone, P., Pavarino, L.F., Taccardi, B.: Simulating patterns of excitation, repolarization and action potential duration with cardiac bidomain and monodomain models. Math. Biosci. 197, 35–66 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Qu, Z., Garfinkel, A.: An advanced algorithm for solving partial differential equation in cardiac conduction. IEEE Trans. Biomed. Eng. 46, 1166–1168 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Frank B. Sachse Gunnar Seemann

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Benson, A.P., Ries, M.E., Holden, A.V. (2007). Effects of Geometry and Architecture on Re-entrant Scroll Wave Dynamics in Human Virtual Ventricular Tissues. In: Sachse, F.B., Seemann, G. (eds) Functional Imaging and Modeling of the Heart. FIMH 2007. Lecture Notes in Computer Science, vol 4466. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72907-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72907-5_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72906-8

  • Online ISBN: 978-3-540-72907-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics