Skip to main content

Can We Trust the Transgenic Mouse? Insights from Computer Simulations

  • Conference paper
Functional Imaging and Modeling of the Heart (FIMH 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4466))

Abstract

Over the past several decades, the mouse has gained prominence in the cardiac electrophysiology literature as the animal model of choice. Using computer models of the mouse and human ECG, this paper is a step toward understanding when the mouse succeeds and fails to mimic functional changes resulting from disease states and drug interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tamaddon, H.S., Vaidya, D., Simon, A.M., Paul, D.L., Morley, G.E.: High-resolution optical mapping of the right bundel branch in connexin40 knockout mice reveals slow conduction in the the specialized conduction system. Circ. Res. 87, 929–936 (2000)

    Google Scholar 

  2. Brunner, M., Guo, W., Mitchell, G.F., Buckett, P.D., Nerbonne, J.M., Koren, G.: Characterization of mice with combined suppression of I to and I K,slow . Am. J. Physiol Heart Circ. Physiol. 281, H1201–H1209 (2001)

    Google Scholar 

  3. Barry, D.M., Xu, H., Schuessler, R.B., Nerbonne, J.M.: Functional knockout of the transient outward current, Long-QT syndrome, and cardiac remodeling in mice. Circ. Res. 83, 560–567 (1998)

    Google Scholar 

  4. Salama, G., London, B.: Mouse models of long QT syndrome J Physiol. 578, 43–53 (2007)

    Google Scholar 

  5. Drici, M., Arrighi, I., Chouabe, C., Mann, J.R., Lazdunski, M., Romey, G., Barhanin, J.: Involvement of IsK-associated K  +  channel heart rate control of repolarization in a murine engineered model of Jervell and Lange-Nielsen syndrome. Circ. Res. 83, 95–102 (1998)

    Google Scholar 

  6. Morley, G.E., Vaidya, D., Samie, F.H., Lo, C., Delmar, M., Jalife, J.: Characterization of conduction in the ventricles of normal and heterozygous Cx43 knockout mice using optical mapping. J. Cardiovasc Electrophysiol. 10, 1361–1375 (1999)

    Article  Google Scholar 

  7. Doevendans, P.A., Daemen, M.J., de Muinck, E.D., Smits, J.F.: Cardiovascular phenotyping in mice. Cardiovasc Res. 39, 34–49 (1998)

    Article  Google Scholar 

  8. Berul, C.I.: Electrophysiological phenotyping in genetically engineered mice. Physiol Genomics 13, 207–216 (2003)

    Google Scholar 

  9. Knollmann, B.C., Tranquillo, J., Sirenko, S.G., Henriquez, C., Franz, M.R.: Microelectrode study of the genesis of the monophasic action potential by contact electrode technique. J. Cardiovasc Electrophysiol. 12, 1246–1252 (2002)

    Article  Google Scholar 

  10. Vaidya, D., Morley, G.E., Samie, F.H., Jalife, J.: Reentry and fibrillation in the mouse heart: A challenge to the critical mass hypothesis. Circ. Res. 85, 174–181 (1999)

    Google Scholar 

  11. Nerbonne, J.M.: Studying cardiac arrhythmias in the mouse - a reasonable model for probing mechanisms? Trends Cardiovasc Med. 14, 83–93 (2004)

    Article  Google Scholar 

  12. Jiang, Y., Pandya, K., Smithies, O., Hsu, E.W.: Three-dimensional diffusion tensor microscopy of fixed mouse hearts. Magn Reson Med. 53, 1133–1137 (2004)

    Google Scholar 

  13. Punske, B.B., Taccardi, B., Steadman, B., Ershler, P.R., England, A., Valencik, M.L., McDonald, J.A., Litwin, S.E.: Effect of fiber orientation on propagation: electrical mapping of genetically altered mouse hearts. J. Electrocardiol. 38( 40-4), 40–44 (2005)

    Article  Google Scholar 

  14. Nygren, A., Clark, R.B., Belke, D.D., Kondo, C., Giles, W.R., Witkowski, F.X.: Voltage-sensitive dye mapping of activation and conduction in adult mouse hearts. Annals of BME 28, 958–967 (2000)

    Google Scholar 

  15. Anumonwo, J.M.B., Tallini, Y.N., Vetter, F.J., Jalife, J.: Action potential characteristics and arrhythmogenic properties of the cardiac conduction system of the murine heart. Circ. Res. 89, 329–335 (2001)

    Google Scholar 

  16. Sampson, K.J., Henriquez, C.S.: Electrotonic influences on action potential duration dispersion in small hearts: a simulation study. Am. J. Physiol. Heart Circ. Physiol. 289, 350–360 (2005)

    Article  Google Scholar 

  17. Liu, G., Iden, J.B., Kovithavongs, K., Gulamhusein, R., Duff, H.J., Kavanagh, K.M.: In vivo temporal and spatial distribution of depolarization and repolarization and the illusive murine T wave. J. Physiol. 555, 267–279 (2003)

    Article  Google Scholar 

  18. Pandit, S.V., Clark, R.B., Giles, W.R., Demir, S.S.: A mathematical model of action potential heterogeneity in adult rat left ventricular myocytes. Biophys. J. 81, 3029–3051 (2001)

    Article  Google Scholar 

  19. ten Tusscher, K.H.W.J., Nobel, D., Nobel, P.J., Panfilov, A.V.: A model for human ventricular tissue. Am. J. Physiol Heart Circ. Physiol. 286, H1573–H1589 (2004)

    Article  Google Scholar 

  20. Harrild, D., Henriquez, C.: A computer model of normal conduction in the human atria. Circ. Res. 87, E25–36 (2000)

    Google Scholar 

  21. Gima, K., Rudy, Y.: Ionic current basis of electrocardiographic waveforms: A model study. Circ. Res. 90, 889–896 (2002)

    Article  Google Scholar 

  22. Danik, S., Cabo, C., Chiello, C., Kang, S., Wit, A.L., Coromilas, J.: Correlation of repolarization of ventricular monophasic action potential with ECG in the murine heart. Am. J. Physiol. 283, H372–H381 (2002)

    Google Scholar 

  23. Agduhr, E., Stenstrom, N.: The appearance of the electrocardiogram in heart lesions produced by cod liver oil treatment. Acta Paediatr 33, 493–588 (1929)

    Google Scholar 

  24. Plonsey, R.: The active fiber in a volume conductor. IEEE Trans. Biomed Eng. 5, 371–381 (1974)

    Article  Google Scholar 

  25. Zhang, Z.S., Tranquillo, J., Neplioueva, V., Bursac, N., Grant, A.O.: Sodium channel kinetic changes that produce Brugada syndrome or progressive cardiac conduction system disease. Am. J. Physiol Heart Circ. Physiol. 292, H399–H407 (2007)

    Article  Google Scholar 

  26. Guo, W., Li, H., London, B., Nerbonne, J.M.: Functional Consequences of elimination of I to,f and I to,s . Circ. Res. 87, 73–79 (2000)

    Google Scholar 

  27. Shaw, R.M., Rudy, Y.: Ionic mechanisms of propagation in cardiac tissue. Roles of the sodium and L-type calcium currents during reduced excitability and decreased gap junction coupling. Circ. Res. 81, 727–741 (1997)

    Google Scholar 

  28. Qu, Z., Weiss, J.N., Garfinkel, A.: Cardiac electrical restitution properties and stability of reentry spiral waves: a simulation study. Am. J. Physiol. 276, H269–283 (1999)

    Google Scholar 

  29. Viswanathan, P.C., Rudy, Y.: Pause induced early afterdepolarizations in the long QT syndrome: a simulation study. Cardiovasc Res. 42, 530–542 (1999)

    Article  Google Scholar 

  30. Babij, P., Askew, R., Nieuwenhuijsen, B., Su, C., Bridal, T.R., Jow, B., Argentieri, T.M., Kulik, J., DeGennaro, L.J., Spinelli, W., Colatsky, T.J.: Inhibition of cardiac delayed rectifier K+ current by overexpression of the Long-QT syndrome HERG G628S mutation in transgenic mice. Circ. Res. 83, 668–678 (1998)

    Google Scholar 

  31. Tranquillo, J.V., Hlavacek, J., Henriquez, C.S.: An integrative model of mouse cardiac electrophysiology from cell to torso. Europace 2, 56–70 (2005)

    Article  Google Scholar 

  32. Bondarenko, V.E., Szigeti, G.P., Bett, G.C.L., Kim, S., Rasmusson, R.L.: Computer model of action potential of mouse ventricular myocytes. Am. J. Physiol. Heart Circ. Physiol. 287, H1378–H1403 (2004)

    Article  Google Scholar 

  33. Iyer, V., Mazhari, R., Winslow, R.: A computational model of the human left-ventricular epicardial myocyte. Biophys. J. 87, 1507–1523 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Frank B. Sachse Gunnar Seemann

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Tranquillo, J., Sunkara, A. (2007). Can We Trust the Transgenic Mouse? Insights from Computer Simulations. In: Sachse, F.B., Seemann, G. (eds) Functional Imaging and Modeling of the Heart. FIMH 2007. Lecture Notes in Computer Science, vol 4466. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72907-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72907-5_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72906-8

  • Online ISBN: 978-3-540-72907-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics