Skip to main content

Noninvasive Electroardiographic Imaging: Application of Hybrid Methods for Solving the Electrocardiography Inverse Problem

  • Conference paper
Functional Imaging and Modeling of the Heart (FIMH 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4466))

  • 1311 Accesses

Abstract

Computing the epicardial potentials from the body surface potentials constitutes one form of the ill-posed inverse problem of electrocardiography (ECG). In this paper, we employ hybrid methods combining the least square QR (LSQR) with truncated singular-value decomposition (TSVD) to solve the inverse problem of ECG. Hybrid methods are based on the Lanczos process, which yields a sequence of small bidiagonal systems approximating the original ill-posed problem, and on another additional direct regularization (the truncated SVD method is used in the present investigation), which is used to stabilize the iteration. The results show that determining of regularization parameters based on the final projected problem rather than on the original discretization one has firmer justification and it takes much less computational cost. The computation time could be reduced by several tenfolds typically, while the performance of the hybrid method is maintained well compared with TSVD, LSQR and GMRes methods. In addition, comparing with LSQR method, the hybrid method can obtain the inverse solutions without facing the “semi-convergence” problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Rudy, Y., Messinger-Rapport,: The inverse problem in electrocardiography: Solutions in terms of epicardial potentials. CRC Crit. Rev. Biomed. Eng. 16, 215–268 (1988)

    Google Scholar 

  2. Seger, M., Fischer, G., Modre, R., Messnarz, B., Hanser, F., Tilg, B.: Lead field computation for the electrocardiographic inverse problem-finite elements versus boundary elements. Computer Methods and Programs in Biomedicine 77, 241–252 (2005)

    Article  Google Scholar 

  3. Kilmer, M.E., O’Leary, D.P.: Choosing Regularization Parameters in Iterative Methods for Ill-posed Problems. SIAM J. Matrix Anal. Appl. 22, 1204–1221 (2001)

    Article  MATH  Google Scholar 

  4. Hanke, M.: On Lanczos Based Methods for the Regularization of Discrete Ill-posed Problems. BIT 41, 1008–1018 (2001)

    Article  Google Scholar 

  5. Brianzi, P., Favati, P., Menchi, O., Romani, F.: A framework for studying the regularizing properties of Krylov subspace methods. Inverse Problems 22, 1007–10216 (2006)

    Article  MATH  Google Scholar 

  6. Jiang, M., Xia, L., Shou, G., Tang, M.: Combination of the LSQR method and a genetic algorithm for solving the electrocardiography inverse problem. Phys. Med. Biol. 52, 1277–1294 (2007)

    Article  Google Scholar 

  7. Ramanathan, C., Jia, P., Ghamen, R., Calvetti, D., Rudy, Y.: Noninvasive Electrocardiographic Imaging (ECGI): Application of the Generalized Minimal Residual (GMRes) Method. Annals of Biomed. Eng. 31, 981–994 (2003)

    Article  Google Scholar 

  8. Hansen, P.C.: Rank-Deficient and Discrete Ill-Posed Problems. Numerical Aspects of Linear Inversion, SIAM Monogr. Math. Model Comput. SIAM, Philadelphia (1998)

    Google Scholar 

  9. O’Leary, D.P., Simmons, J.A.: A bidiagonalization-regularization procedure for large scale discretization of ill-posed problems. SIAM J.Sci. Statist. Comput. 2, 474–489 (1981)

    Article  MATH  Google Scholar 

  10. Paige, C.C., Saunders, M.A.: LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Trans. Math. Software 8, 43–71 (1982)

    Article  MATH  Google Scholar 

  11. Golub, G.H., von Matt, U.: Generalized cross-validation for large-scale problems. J. Comput. Graph. Statist. 6, 1–34 (1997)

    Article  Google Scholar 

  12. Xia, L., Huo, M., Wei, Q., Liu, F., Crozier, S.: Analysis of cardiac ventricular wall motion based on a three-dimensional electromechanical biventricular model. Phys. Med. Biol. 50, 1901–1917 (2005)

    Article  Google Scholar 

  13. Xia, L., Huo, M., Wei, Q., Liu, F., Crozier, S.: Electrodynamic Heart Model Construction and ECG Simulation. Methods of Information in Medicine 45, 564–573 (2006)

    Google Scholar 

  14. Xia, L., Zhang, Y., Zhang, H., Wei, Q., Liu, F., Crozier, S.: Simulation of Brugada syndrome using cellular and three-dimensional whole-heart modeling approaches. Phsiological Measurement 27, 1125–1142 (2006)

    Article  Google Scholar 

  15. Johnston, P.R., Gulrajani, R.M.: A New Method for Regularization Parameter Determination in the Inverse Problem of Electrocardiography. IEEE Tran. Biomed. Eng. 44, 19–39 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Frank B. Sachse Gunnar Seemann

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Jiang, M., Xia, L., Shou, G. (2007). Noninvasive Electroardiographic Imaging: Application of Hybrid Methods for Solving the Electrocardiography Inverse Problem. In: Sachse, F.B., Seemann, G. (eds) Functional Imaging and Modeling of the Heart. FIMH 2007. Lecture Notes in Computer Science, vol 4466. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72907-5_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72907-5_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72906-8

  • Online ISBN: 978-3-540-72907-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics