Skip to main content

Forward and Inverse Solutions of Electrocardiography Problem Using an Adaptive BEM Method

  • Conference paper
Functional Imaging and Modeling of the Heart (FIMH 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4466))

Abstract

The construction of geometry models of heart-torso is critical for solving the forward and inverse problems of magneto- and electro-cardiography (MCG/ECG). Boundary element method (BEM) is a commonly used numerical approach for the solution of these problems and it requires the modeling of interfaces between various tissue regions. In this study, a new BEM (h-adaptive type) has been applied to the ECG forward/inverse problems. Compared with those traditional BEMs, the adaptive BEM can self-adjust the number and size of the boundary element (BE) meshes according to an error indicator, and thus can save a lot of computational time and also improve the accuracy of the forward and inverse solutions. In this paper, the procedure of the adaptive triangular mesh generation is detailed and the algorithm is tested using a concentric sphere model and a realistic heart-torso model. For the realistic torso model, to improve the numerical accuracy, a number of new nodes are added on the basis of initial torso BE meshes, and the corresponding node coordinates are determined using an approach called Parametric Fourier Representation (PFR) of closed polygons. The simulation results show that the adaptive BEM is more accurate and efficient than traditional BEMs and therefore it is a very promising numerical scheme for ECG forward/inverse problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gulrajani, R.M.: The Forward and Inverse problems of Electrocardiography. IEEE. Eng. Med. Bio. 17(122 ), 84–101 (1998)

    Article  Google Scholar 

  2. Dössel, O.: Inverse Problem of Electro- and Magnetocardiography: Review and Recent Progress. Int. J. Bioelectromagnetism 2(2) (2000)

    Google Scholar 

  3. Michel, C.M., Murray, M.M., Lantza, G., Gonzaleza, S., Spinellib, L., Peralta, R.G.: EEG source imaging. Clin. Nerophysiol. 115, 2195–2222 (2004)

    Article  Google Scholar 

  4. Seger, M., Fischer, G., Modre, R., Messnarz, B., Hanser, F., Tilg, B.: Lead field computation for the electrocardiographic inverse problem-finite elements versus boundary elements. Comp. Meth. Prog. Biomed. 77(3), 241–252 (2005)

    Article  Google Scholar 

  5. Johnson, C.R.: Computational and numerical methods for bioelectric field problems. Crit. Rev. Biomed. Eng. 25(1), 1–81 (1997)

    Google Scholar 

  6. Johnson, C.R.: Adaptive Finite Element and Local Regularization Methods for the Inverse ECG Problem. In: Inverse Problems in Electrocardiology, Advances in Computational Biomedicine, Edited by Peter Johnston, WIT Press vol. 5, pp. 51–88 (2001), http://www.cmp.co.uk/

  7. Nixon, J.B., Rasser, P.E., Teubner, M.D., Clark, C.R., Bottema, M.J.: Numerical model of electrical potential within the human head. Int. J. Numer. Methods Eng. 56, 2353–2366 (2003)

    Article  MATH  Google Scholar 

  8. Harrild, D.M., Henriquez, C.S.: A finite volume model of cardiac propagation. Ann. Biomed. Eng. 25(2), 315–334 (1997)

    Article  Google Scholar 

  9. Ghosh, S., Rudy, Y.: Accuracy of quadratic versus linear interpolation in noninvasive electrocardiographic imaging (ECGI). Ann. Biomed. Eng. 33, 1187–1201 (2005)

    Article  Google Scholar 

  10. Akalm-Acar, Z., Gençer, N.G.: An advanced boundary element method (BEM) implementation for the forward problem of electromagnetic source imaging. Phys. Med. Biol. 49, 5011–5028 (2004)

    Article  Google Scholar 

  11. Fischer, G., Tilg, B., Wach, P., Modre, R., Leder, U., Nowak, H.: Application of high-order boundary elements to the electrocardiographic inverse problem. Comput. Meth. Pro. Biomed. 58, 119–131 (1999)

    Article  Google Scholar 

  12. Buist, M., Pullan, A.: Torso Coupling Techniques for the Forward Problem of Electrocardiography. Ann. Biomed. Eng. 30, 1187–1201 (2002)

    Article  Google Scholar 

  13. Ferguson, A.S., Stroink, G.: Factors affecting the accuracy of the boundary element method in the forward problem - I: Calculating surface potentials. IEEE Trans. Biomed. Eng. 44, 1139–1155 (1997)

    Article  Google Scholar 

  14. Fuchs, M., Jörn, K., Wagner, M., Hawes, S., Ebersole, S., Ebersole, J.S.: A standardized boundary element method volume conductor model. Clin. Nerophysiol. 113, 702–712 (2002)

    Article  Google Scholar 

  15. Kita, E., Kamiya, N.: Error estimation and adaptive mesh refinement in boundary element method, an overview. Eng. Anal. Bound. Elem. 25, 479–495 (2001)

    Article  MATH  Google Scholar 

  16. Bächtold, M., Emmenegger, M., Korvink, J.G., Baltes, H.: An error indicator and automatic adaptive meshing for electrostatic boundary element simulations. IEEE Trans.Computer-Aided Design. 16, 1439–1446 (1997)

    Article  Google Scholar 

  17. Hren, R., Stroink, G.: Application of the surface harmonic expansions for modeling the human torso. IEEE Trans. Biomed. Eng. 42, 521–524 (1995)

    Article  Google Scholar 

  18. Zilkowski, M., Brauer, H.: Methods of mesh generation for biomagnetic problems. IEEE Trans. Magn. 32, 1345–13487 (1996)

    Article  Google Scholar 

  19. Lindholm, D.A.: Automatic triangular Mesh Generation Surfaces of Polyhedra. IEEE Trans. Mag. 6, 2539–2542 (1983)

    Article  Google Scholar 

  20. Hansen, P.C.: Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion. SIAM, Philadelphia, 199

    Google Scholar 

  21. Shou, G.F., Jiang, M.F., Xia, L., Wei, Q., Liu, F., Crozier, S.: A comparision of different choices for the regularization parameter in inverse electrocardiography problem. IEEE Eng. Med. Biol. Soc. 28th Ann. Int. Conf. 28, 3903–3906 (2006)

    Google Scholar 

  22. Xia, L., Huo, M., Wei, Q., Liu, F., Crozier, S.: Electrodynamic Heart Model Construction and ECG Simulation. Methods Inf. Med. 45, 564–573 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Frank B. Sachse Gunnar Seemann

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Shou, G., Xia, L., Jiang, M., Liu, F., Crozier, S. (2007). Forward and Inverse Solutions of Electrocardiography Problem Using an Adaptive BEM Method. In: Sachse, F.B., Seemann, G. (eds) Functional Imaging and Modeling of the Heart. FIMH 2007. Lecture Notes in Computer Science, vol 4466. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72907-5_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72907-5_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72906-8

  • Online ISBN: 978-3-540-72907-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics