Abstract
We present a novel strategy to perform estimation for a mechanical system defined to feature the same essential characteristics as a heart model, using measurements of a type that is available in medical imaging. We adopt a sequential approach, and the joint state-parameter estimation procedure is constructed based on a robust and effective state estimator inspired from collocated feedback control. The convergence of the resulting joint estimator can be mathematically established, and we demonstrate its effectiveness by identifying localized contractility and stiffness parameters in a test problem representative of cardiac behavior and using synthetic –albeit realistic –measurements.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Anderson, B.D.O., Moore, J.B.: Optimal Filtering. Prentice-Hall, Englewood Cliffs (1979)
Augenstein, K.F., Cowan, B.R., LeGrice, I.J., Young, A.A.: Estimation of cardiac hyperelastic material properties from MRI tissue tagging and diffusion tensor imaging. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 628–635. Springer, Heidelberg (2006)
Bardos, C., Lebeau, G., Rauch, J.: Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J. Control Optim. 30(5), 1024–1065 (1992)
Bensoussan, A.: Filtrage optimal des systèmes linéaires. Dunod (1971)
Collet, M., Walter, V., Delobelle, P.: Active damping of a micro-cantilever piezo-composite beam. J. Sound Vibration 260(3), 453–476 (2003)
Cox, S., Zuazua, E.: The rate at which energy decays in a damped string. Comm. Partial Differential Equations 19(1-2), 213–243 (1994)
Duan, Q., Moireau, P., Angelini, E., Chapelle, D.: Simulation of 3D ultrasound with a realistic electro-mechanical model of the heart. In: Sachse, F.B., Seemann, G. (eds.) FIMH 2007. LNCS, vol. 4466, pp. 463–473. Springer, Berlin Heidelberg (2007)
Hunter, P.J., McCulloch, A.D., ter Keurs, H.E.D.: Modelling the mechanical properties of cardiac muscle. Progress in Biophysics and Molecular Biology. 69, 289–331 (1998)
Kalman, R.E., Bucy, R.S.: New results in linear filtering and prediction theory. ASME Trans.–Journal of Basic Engineering 83(Series D), 95–108 (1961)
Lions, J.-L.: Contrôlabilité exacte, perturbations et stabilisation de systèmes distribués. (Tome 1), of Recherches en Mathématiques Appliquées [Research in Applied Mathematics]. Masson, Paris, vol. 8 (1988)
Moireau, Ph., Chapelle, C., Le Tallec, P.: Joint state and parameter estimation for distributed mechanical systems. Submitted to CMAME.
Pham, D.T., Verron, J., Roubeaud, M.C.: A singular evolutive interpolated kalman filter for data assimilation in oceanography. J. Marine Systems 16, 323–341 (1997)
Preumont, A.: Vibration Control of Active Structures, An Introduction, 2nd edn. Kluwer Academic Publishers, Boston (2002)
Sainte-Marie, J., Chapelle, D., Cimrman, R., Sorine, M.: Modeling and estimation of the cardiac electromechanical activity. Comp. & Struct. 84, 1743–1759 (2006)
Tong, S., Shi, P.: Cardiac motion recovery: Continuous dynamics, discrete measurements, and optimal estimation. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 744–751. Springer, Heidelberg (2006)
Zhang, Q., Clavel, A.: Adaptive observer with exponential forgetting factor for linear time varying systems. In: Decision and Control, 2001. Proceedings of the 40th IEEE Conference on, vol. 4, Orlando, FL, USA, pp. 3886–3891 (2001)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Moireau, P., Chapelle, D. (2007). Effective Estimation in Cardiac Modelling. In: Sachse, F.B., Seemann, G. (eds) Functional Imaging and Modeling of the Heart. FIMH 2007. Lecture Notes in Computer Science, vol 4466. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72907-5_37
Download citation
DOI: https://doi.org/10.1007/978-3-540-72907-5_37
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72906-8
Online ISBN: 978-3-540-72907-5
eBook Packages: Computer ScienceComputer Science (R0)