Skip to main content

Wooden Geometric Puzzles: Design and Hardness Proofs

  • Conference paper
Fun with Algorithms (FUN 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4475))

Included in the following conference series:

  • 1089 Accesses

Abstract

We discuss some new geometric puzzles and the complexity of their extension to arbitrary sizes. For gate puzzles and two-layer puzzles we prove NP-completeness of solving them. Not only the solution of puzzles leads to interesting questions, but also puzzle design gives rise to interesting theoretical questions. This leads to the search for instances of partition that use only integers and are uniquely solvable. We show that instances of polynomial size exist with this property. This result also holds for partition into k subsets with the same sum: We construct instances of n integers with subset sum O(n k + 1), for fixed k.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cubism For Fun website, http://cff.helm.lu/

  2. Culberson, J.: SOKOBAN is PSPACE-complete. In: Proceedings in Informatics 4 (Int. Conf. FUN with Algorithms 1998), pp. 65–76 (1999)

    Google Scholar 

  3. Demaine, E.D.: Playing games with algorithms: Algorithmic combinatorial game theory. In: Proc. of Math. Found. of Comp. Sci. pp. 18–32 (2001)

    Google Scholar 

  4. Demaine, E.D., Demaine, M.L.: Puzzles, art, and magic with algorithms. Theory Comput. Syst. 39(3), 473–481 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Demaine, E.D., Hohenberger, S., Liben-Nowell, D.: Tetris is hard, even to approximate. Technical Report MIT-LCS-TR-865, MIT (2002)

    Google Scholar 

  6. Flake, G.W., Baum, E.B.: Rush Hour is PSPACE-complete, or why you should generously tip parking lot attendants (Manuscript)(2001)

    Google Scholar 

  7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman, New York, NY (1979)

    MATH  Google Scholar 

  8. Garey, M.R., Johnson, D.S., Tarjan, R.E.: The planar Hamiltonian circuit problem is NP-complete. SIAM J. Comput. 5(4), 704–714 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ratner, D., Warmuth, M.: Finding a shortest solution for the N ∗ N-extension of the 15-puzzle is intractable. J. Symb. Comp. 10, 111–137 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Robertson, E., Munro, I.: NP-completeness, puzzles, and games. Util. Math. 13, 99–116 (1978)

    MathSciNet  MATH  Google Scholar 

  11. van Kreveld, M.: Some tetraform puzzles. Cubism For Fun 68, 12–15 (2005)

    Google Scholar 

  12. van Kreveld, M.: Gate puzzles. Cubism For Fun 71, 28–30 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Alt, H., Bodlaender, H., van Kreveld, M., Rote, G., Tel, G. (2007). Wooden Geometric Puzzles: Design and Hardness Proofs. In: Crescenzi, P., Prencipe, G., Pucci, G. (eds) Fun with Algorithms. FUN 2007. Lecture Notes in Computer Science, vol 4475. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72914-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72914-3_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72913-6

  • Online ISBN: 978-3-540-72914-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics