Abstract
We analyze differences between BL–algebras and MV–algebras. The study has application in mathematical fuzzy logic as the Lindenbaum algebras of Lukasiewicz logic or Hájek’s BL–logics are MV–algebras or BL–algebras, respectively. We focus on possible generalizations of Boolean elements of a general BL–algebra L; we prove that an element x ∈ L is Boolean iff x ∨ x ∗ = 1. L is called semi–Boolean if, for all x ∈ L, x ∗ is Boolean. We prove that an MV–algebra L is semi–Boolean iff L is a Boolean algebra. A BL–algebra L is semi–Boolean iff L is a SBL–algebra. A BL–algebra L is called hyper–Archimedean if, for all x ∈ L, there is an n ≥ 1 such that x n is Boolean. We prove that hyper–Archimedean BL–algebras are MV–algebras. We discuss briefly the applications of our results in mathematical fuzzy logic.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cavaccini, V., Lettieri, A.: Some results on hyper–Archimedean MV–algebras. In: Barlotti, A., et al. (eds.) Combinatorics ’90, pp. 71–79. Elsevier, Amsterdam (1992)
Di Nola, A., Georgescu, G., Leustean, L.: Boolean Products of BL–algebras. Jour. Math. Anal. Appl. 251, 106–131 (2000)
Di Nola, A., Sessa, S., Esteva, F., Godo, L., Garcia, P.: The variety generated by perfect BL–algebras: an algebraic approach in a fuzzy logic setting. Ann. Math. Artif. Int. 35, 197–214 (2002)
Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht (1998)
Mertanen, J., Turunen, E.: Problematic extension of states on BL–algebras (submitted)
Turunen, E.: Mathematics behind Fuzzy Logic. Springer, Heidelberg (1999)
Turunen, E.: BL–algebras of Basic Fuzzy Logic. Mathware and Soft Computing 6, 49–61 (1999)
Turunen, E.: Boolean deductive systems of BL–algebras. Archive for Mathematical Logic 40, 467–473 (2001)
Turunen, E., Sessa, S.: Local BL–algebras. Multiple Valued Logic 6(1–2), 229–249 (2001)
Turunen, E.: Semilocal BL–algeras. In: IX International IFSA Congress 2005, Beiing, China, 28–31 July 2005, pp. 252–256 (2005)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Turunen, E. (2007). Semi–Boolean and Hyper–Archimedean BL–Algebras. In: Melin, P., Castillo, O., Aguilar, L.T., Kacprzyk, J., Pedrycz, W. (eds) Foundations of Fuzzy Logic and Soft Computing. IFSA 2007. Lecture Notes in Computer Science(), vol 4529. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72950-1_41
Download citation
DOI: https://doi.org/10.1007/978-3-540-72950-1_41
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72917-4
Online ISBN: 978-3-540-72950-1
eBook Packages: Computer ScienceComputer Science (R0)