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Abstract. A cultural algorithm, together with a set of new operators
for the timetabling problem(TP), is proposed in this paper. The new
operators extract information about the problem during the evolutionary
process, and they are combined with some previously proposed operators,
in order to improve the performance of the algorithm. The proposed
algorithm is tested with a benchmark of 20 instances, and compared
with respect to three other algorithms: two evolutionary algorithms and
a simulated annealing algorithm which won an international competition
on TP.

1 Introduction

The timetabling problem (TP) is a combinatorial problem that can be viewed
as an optimzation task. It consists of assigning schedules to several workers
or students, which also require some resources. In order to make a feasible
timetable, a set of hard constraints must be satisfied(most of them technical
constraints); moreover, a good timetable must satisfy some soft constraints (fre-
quently, comfort-related constraints), and if all soft constraints are met, we can
consider the solution as optimal. This NP-hard problem presents several vari-
ants, such as the employee, exam and university timetabling problems. In 2002,
the Metaheuristics Network organized a competition on the University Course
Timetabling Problem (UCTP), and published a set of instances of the prob-
lem, in order to make easier the comparisons of different algorithms. Cultural
algorithms [1] are a particular class of evolutionary algorithm that use domain
knowledge extracted during the evolutionary process in order to improve the per-
formance of the search engine (i.e. the evolutionary algorithm) adopted. What
we explore in this paper is the use of a combination of knowledge extracted
during the evolutionary search with some knowledge that is inserted a priori
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because it is normally known to be useful when solving combinatorial problems.
The main hypothesis in this regard was that the incorporation of knowledge into
an evolutionary algorithm would increase its performance as to make it compet-
itive with other approaches whose computational cost is significantly higher.
Several heuristics have been used for different types of timetabling problems [2],
[3], [4], [5], [6], [7]. Note however, that this paper presents the first attempt (to
the authors’ best knowledge) to use cultural algorithms to solve TPs.

The proposed approach is compared with respect to an evolutionary algo-
rithm with specialized crossover operators [2], a recently published memetic al-
gorithm [3], and a simulated annealing approach [5] that won the competition of
the Metaheuristics Network, in all the test cases proposed for that competition.
The obtained results indicate that the proposed approach is a viable alternative
for solving, efficiently TPs.

The remainder of this paper is organized as follows: in Section 2 a brief
description of the statement of the problem is provided. Section 3 contains an
introduction to cultural algorithms which includes a description of their main
components and the main motivation to use them. Section 4 contains the details
of the proposed approach to solve university course timetabling problems using
a cultural algorithm. As part of this section, a description of the representation
of solutions adopted in this work is included, as well as the mechanisms im-
plemented to add domain knowledge to the evolutionary algorithm both before
and during the search process. Section 5 provides a comparative study. Finally,
Section 6 presents the general conclusions and some possible paths for future
research.

2 Problem Statement

The variant of the problem tackled here was proposed by Ben Paechter for the
International Timetabling Competition organized by the Metaheuristics Net-
work [7]. It is referred to in the following as the University Course Timetabling
Problem (UCTP). Lecture must be scheduled in 45 timeslots (5 days of 9 hours
each) and a number of rooms, with varying facilities and student capacities, so
that the following hard constraints are satisfied:

– H1 : lectures having students in common cannot take place at the same time;
– H2 : lectures must take place in a room suitable for them in terms of facilities

and student capacity; and
– H3 : no two lectures can take place at the same time in the same room.

We consider as well the following soft constraints:

– S1 : students should not have to attend lectures in the last timeslot of the
day;

– S2 : they should not attend more than two lectures in a row; and
– S3 : they should not have a single lecture in any given day.



A timetable in which all lectures have been assigned to a timeslot and a room
so that no hard constraints are violated, is said to be feasible. The aim of the
problem is to find a feasible solution with minimal soft constraint violations.
The corresponding mathematical model is detailed in [8].

3 Cultural Algorithms

Cultural algorithms were developed by Reynolds [1] as a complement to the
metaphor used by evolutionary algorithms, which had focused mainly on genetic
and natural selection concepts. Cultural algorithms are based on some theories
originated in sociology and archaeology which try to model cultural evolution
(see for example [9]). Such theories indicate that cultural evolution can be seen
as an inheritance process operating at two levels: (1) a micro-evolutionary level,
which consists of the genetic material that an offspring inherits from its parents,
and (2) a macro-evolutionary level, which consists of the knowledge acquired
by individuals through generations. This knowledge, once encoded and stored, is
used to guide the behavior of the individuals that belong to a certain population.

Culture can be seen as a set of ideological phenomena shared by a population
[10]. Through these phenomena, an individual can interpret its experiences and
decide its behavior. In these models, it can be clearly appreciated the part of the
system that is shared by the population: the knowledge, acquired by members
of a society, but encoded in such a way that such knowledge can be accessed by
every other member of the society. And then there is an individual part, which
consists of the interpretation of such knowledge encoded in the form of symbols.
This interpretation will produce new behaviors as a consequence of the assimi-
lation of the corresponding knowledge acquired, combined with the information
encoded in the ancestors’ genes. Reynolds [1] attempts to capture this double
inheritance phenomenon through his proposal of cultural algorithms. The main
goal of such algorithms is to increase the learning or convergence rates of an
evolutionary algorithm such that the system can respond better to a wide va-
riety of problems [11]. Cultural algorithms operate in two spaces. First, there
is the population space, which consists of (as in all evolutionary algorithms) a
set of individuals. Each individual has a set of independent features that are
used to determine its fitness. Through time, such individuals can be replaced by
some of their descendants, which are obtained through the application of a set
of operators from the population. The second space is the belief space, which
is where the knowledge, acquired by individuals through generations, is stored.
The information contained in this space must be accessible to each individual,
so that they can use it to modify their behavior. In order to join the two spaces,
it is necessary to provide a communication link, which dictates the rules regard-
ing the type of information that must be exchanged between the two spaces.
Most of the steps of a cultural algorithm correspond with the steps of a tradi-
tional evolutionary algorithm. The main difference lies in the fact that cultural
algorithms use a belief space. At each generation the belief space is updated
and it incorporates the individual experiences of a select group of members of



the population by applying an accept function. On the order hand, the varia-
tion operators (such as recombination or mutation) are modified by an influence

function. This function applies some pressure such that the children resulting
from the variation operators can exibit behaviors closer to the diserable ones
and father away from the undiserable ones, according to the information stored
in the belief space. These two functions (accept and influence) constitute the
communication link between the population space and the belief space. The im-
plementation details for these functions in the current proposal are given in the
next section. In [1], it is proposed the use of genetic algorithms to model the
micro-evolutionary process, and Version Spaces to model the macro-evolutionary
process of a cultural algorithm. This sort of algorithm was called the Version

Space guided Genetic Algorithm (VGA). The main idea behind this approach is
to preserve beliefs that are socially accepted and discard (or prune) unaccept-
able beliefs. Therefore, if a cultural algorithm for global optimization is applied,
the acceptable beliefs can be seen as constraints that direct the population at
the micro-evolutionary level. In genetic algorithms’ theory, there is an expres-
sion, called schema theorem that represents a bound on the speed at which the
best schemata of the population are propagated. Reynolds[1] provided a brief
discussion regarding how the belief space could affect the schema theorem. His
conclusion was that, by adding a belief space to an evolutionary algorithm, the
performance of such algorithm can be improved by increasing its convergence
rate. That constitutes the main motivation to use cultural algorithms. Despite
the lack of a formal mathematical proof of this efficiency improvement, there is
empirical evidence of such performance gains reported in the literature (see for
example [12, 13]).

4 Proposed Approach

The approach proposed in this paper uses, in its population space, a population
based on the evolutionary algorithm originally proposed in [2]. A pseudo-code
with the main steps of the proposed cultural algorithm is shown in Algorithm 1.
In our algorithm, we have considered three types of knowledge: situational, nor-
mative and domain knowledge. Also, we are using five variation operators: two of
them use the cultural knowledge (cultural mutation and repair) while the other
three are designed to add the exploration component of the algorithm (inter-
change, sequencing and simple mutation). It is worth mentioning that only one
of the exploration operators is applied to each individual.
Representation: The representation adopted to encode the solutions plays a
very important role when applying an evolutionary computation technique [14].
In this case, a matrix representation was adopted, where columns represent slots
of time, and rows represent rooms for the events. This encoding was chosen
because it can represent any feasible timetable, and is easier to analyze the vio-
lation of some hard constraints, considering only one column at a time.
Exploration Operators: The exploration operators are those that allow to

maintain diversity of the population. They are listed next. The sequencing op-



Algorithm 1 Pseudo-code of the cultural algorithm adopted

Generate s random schedules (initial population)
Compute the fitness of each individual in the initial population
Initialize the belief space (copying the best individual to the situational belief space
and create the normative matrix)
repeat

for each individual in current population do

Apply cultural mutation operator
switch (operator)

case Interchange: Apply Interchange Operator
case Sequencing: Apply Sequencing Operator
case SimpleMutation: Apply Simple Mutation Operator

end switch

Apply repair operator (with domain knowledge)
end for

Selection proccess
Update the belief space (with the individuals accepted)

until the end condition is satisfied

erator is similar to the one in [5], and its intention is to generate a large change
in the individual since it interchanges two timeslots (this operator is the most
destructive one used here). The interchange operator of [2], interchanges two
events, and its purpose is to modify the individuals when the problems have
in their feasible solutions the same number of places available and events to
assign. The simple mutation operator changes the place of an event, and it is
useful when the problems have more places availabe in their feasible solutions
(without considering the last periods of the day) than events to assign. The last
two operators make use of the matching algorithm [15] to increase their rate of
success.

Parameter Control for the Application of Exploration Operators

The parameter control is a process, concurrent to the search of solutions, that
allows values of the parameters to change during this process [16]. We use a
mechanism of parameter control in order to select the exploration operator (in-
terchange, sequencing or simple mutation) to apply during the mutation pro-
cess, using a roulette wheel and based on the success rate of each operator. This
mechanism consists of updating the probability of each operator to be applied,
following some simple rules. If the application of the operator number i results
on an improvement of the fitness of the generated individual (with respect to his
parent) (fcur < fprev), the update of the probabilities is made as follows:

operator[i] = operator[i] + ∆variation

where operator[] is the array that contains the probabilities of the operators to

be applied, ∆variation =
fprev−fcur

fprev+fcur

, and ∀j ∈ {1, . . . , NumOper} and i 6= j,



operator[j] = operator[j]− ∆variation
NumOper−1

, with NumOper = 3 in this case, because
we have three operators.

When an operator i is applied and the present solution gets worse (fcur >
fprev); the updating of the probabilities is made as follows:

operator[i] = operator[i] − ∆variation ∗ α

where α = PresentT ime
TotalT ime

, and ∀j ∈ {1, . . . , NumOper} and i 6= j, operator[j] =

operator[j] + ∆variation∗α
NumOper−1

.
The goal of incorporating the α factor is to mantain controlled the level

of decrement, with the objective of not dusturbing those operators whose de-
creasing ranks are much greater, like the sequencing operator. Initially, the
3 operators in competition start with the same probability of being chosen:
∀i ∈ {1, . . . , NumOper}, operator[i] = 1/CantOper. In order to assure that all
operators always have a probability 6= 0 of being chosen, all values in operator[]
remain between MinProb = 0.1 and MaxProb = 0.8.
Mutation Operators with Cultural Influence: The operator begins select-
ing an event E and a position (r, t) to move it. This is done through different
types of cultural influence.
Situational Influence: With the situational influence each individual tries to fol-
low a leader. Such a leader is the best individual found, and is stored in the sit-
uational belief space. The key idea is that the individual to be mutated becomes
more similar to the leader after the mutation process. The mutation operator
randomly selects an event E from the leader, and tries to inherit its position
(r, t) to the individual.

The situational belief space is updated at each generation. If the best indi-
vidual of the current generation is better than the leader in the situational belief
space, then the leader is replaced by that individual.
Normative Influence: This type of influence is more complex. At each generation,
the above average individuals are selected. The idea is to influence the individ-
ual to be mutated to inherit some of their characteristics. Before describing the
procedure, we need the following definitions:

Definition 41 We define a ranking of events as the set of all the events ordered

by the number of events with shared students among them. Thus, the event most

connected with other events is the first in the ranking.

Definition 42 Given a population P (g) of the generation g and the set Sg com-

posed by the best s individuals of the generation g, we define M , where each ele-

ment Mij is the timeslot assigned to the event i in the individual j which belongs

to Sg.

The operator proceeds as follows. The room r is fixed. The event is chosen
from the ranking of events using a roulette wheel procedure which is biased to the
most interconnected events. The new timeslot in the same room r is randomly
selected from the matrix M , thus the most common timeslot t of the event E
in M has the biggest probability of being selected. The hardest event to be



Algorithm 2 mutation(E, (r, t)) procedure, which implements mutation after
the influence of cultural selection
1: mutation finished = FALSE

2: identify the position (rE, tE) of the event E in the chromosome
3: while mutation finished 6= TRUE or maxtries < 1000 do

4: if the position (r, t) of the chromosome is empty then

5: try to move the event E from (rE, tE) to (r, t), satisfying the hard constraints
6: else

7: try a swapping move of the event Em in (r, t)
8: end if

9: if the position of E was changed then

10: mutation finished = TRUE

11: end if

12: end while

assigned, from the constraints point of view, is the event that shares students
with the largest number of events. The matrix M is updated at each generation
g, after the selection of the set Sg (the above average individuals). Once an event
E and the position (r, t) have been selected (by any of the cultural influences
mentioned), the process of mutation continues as shown in Algorithm 2. First
of all, the operator identifies the current position (rE , tE) of the event E in the
individual to be mutated. If the new position selected (r, t) is empty and if it is
feasible to place E there (from the hard constraints point of view), the current
position of event E is modified to (r, t). In case another event Em is in (r, t), the
operator makes swapping moves to change Em to another position, in order to
release (r, t).
Domain Knowledge: Our algorithm makes a post-processing procedure which
uses the domain knowledge to modify individuals. In the timetabling problem,
it is known that the best solution does not include events in the last timeslots
of each day, thus the purpose of the repair operator is to try to move the events
located in the last timeslots to the earliest ones, always satisfying the hard
constraints.

5 Comparison of Results

The Cultural Algorithm (CA) is compared with respect to 3 different approaches:
a Simulated Annealing (SA) that was the winner of the competition [5], a recent
version of a Memetic Algorithm (MA) [3] and the Evolutionary Algorithm (EA)
in which this work is based [2]. These references were chosen because they are
representative of the state-of-the-art and very competitive on the timetabling
problem. The comparison with another EA shows the improvement obtained
with the incorporation of culture. The SA approach still presents the best re-
sults, but we compare results with it even when it is not an evolutionary algo-
rithm. The benchmark adopted to make the tests and comparisons are the 20
instances of UCTP from the timetabling competition [7]. Those problems are



characterized for being of varied difficulty, they consider the individual satisfac-
tion of the students (which allows to consider them individually, not in classes
nor groups), and have at least one solution that fulfills both types of restrictions.
The proposed approach was implemented in the C++ programming language
and was compiled using the GNU g++ compiler in the operating system Debian
3.1. Also, the matching algorithm found in the LEDA library [15] was used.

The cultural algorithm was executed 360 s, as was indicated for the bech-
marking program of the competition, for our system configuration.

5.1 Cultural Algorithm and Evolutionary Algorithm

The graphs of Figure 1 show the best (right) and the worst case (left) of im-
provement of CA with respect to EA, in the 20 instances considered. The worst
case and the best behavior consider a significant improvement in the first stages
which is reflected directly in the final result, in which the cultural algorithm
has better results. These graphs show that the incorporation of culture tends to
accelerate the convergence of the algorithm and to improve the results.
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Fig. 1. Comparison in time: left the worst case, right the best one

5.2 Cultural Algorithm and Other Algorithms

Table 1 shows the results obtained by each algorithm in the 20 problem in-
stances(PI). Table 2 shows a summary of the obtained results emphasizing that
the CA improves all the results of EA. The results of the CA are very close in
quality from those of MA. Finally, SA is still the most robust approach to solve
timetabling problems.

5.3 Adaptation on Operators Application Rate

The incorporation of a mechanism to control the parameters of the cultural al-
gorithm, during the selection of the operator to use, resulted on an improvement



PI 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

EA 288 260 322 679 557 532 430 305 283 311 328 350 420 469 400 302 521 254 550 424

CA 140 123 149 330 306 171 159 133 101 147 120 187 233 267 204 102 311 100 296 159

MA 104 91 126 189 212 90 127 94 78 113 90 138 185 187 120 74 182 75 224 60

SA 45 25 65 115 102 13 44 29 17 61 44 107 78 52 24 22 86 31 44 7
Table 1. Comparison of results

Algorithm EA CA MA SA

Average 399,25 186,9 127,95 50,55

Std. Desviation 119,46 76,58 50,72 32,39
Table 2. Summary of results for all instances

on the performance of every instance of the benchmark. The graphs of Figure 2
show two representative instances of UCTP. One of them is the instance number
20 (left) where 350 events in 400 places are considered; in such a case the simple
mutation operator resulted useful because an important factor was the number
of free places to assign events. On the other hand, instance number 09 (right)
has less options to schedule an event, while it has 440 events and just 440 places;
in this case, the interchange operator was more useful.
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Fig. 2. Operators’ rate of application: left instance 20, right instance 09

6 Conclusions and Future Work

In this paper, we propose the use of domain knowledge, both a priori and ex-
tracted during the search, to improve the performance of an evolutionary algo-
rithm when solving timetabling problems. The executed experiments provided
very encouraging results.



As a future work it would be very interesting to analyze the mechanisms of
the simulated annealing method, in order to incorporate them in an evolutionary
algorithm or a cultural algorithm. Also, the development of a classification of
instances, is a very interesting topic to research, mainly to better understand
the performance of different algorithms on different instances.
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