Skip to main content

Generating LRD Traffic Traces Using Bootstrapping

  • Conference paper
Managing Traffic Performance in Converged Networks (ITC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 4516))

Included in the following conference series:

  • 1370 Accesses

Abstract

Long-range dependence (LRD) or second-order self-similarity has been found to be an ubiquitous feature of internet traffic. In addition, several traffic data sets have been shown to possess multifractal behavior. In this paper, we present an algorithm to generate traffic traces that match the LRD and multifractal properties of the parent trace. Our algorithm is based on the decorrelating properties of the discrete wavelet transform (DWT) and the power of stationary bootstrap algorithm.

To evaluate our algorithm we use multiple synthetic and real data sets and demonstrate its accuracy in providing a close match to the LRD, multifractal properties and queueing behavior of the parent data set.We compare our algorithm with the traditional fractional gaussian noise (FGN) model and the more recent multifractal wavelet model (MWM) and establish that it outperforms both these models in matching real data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Leland, W., Taqqu, M., Willinger, W., Wilson, D.: On the Self-Similar Nature of Ethernet Traffic (Extended Version). IEEE/ACM Transactions on Networking 2, 1–15 (1994)

    Article  Google Scholar 

  2. Paxson, V., Floyd, S.: Wide-Area Traffic: The Failure of Poisson Modeling. IEEE/ACM Transactions on Networking 3, 226–244 (1995)

    Article  Google Scholar 

  3. Beran, J., Sherman, R., Taqqu, M., Willinger, W.: Long-Range Dependence in Variable-Bit-Rate Video Traffic. IEEE Transactions on Communications 43, 1566–1579 (1995)

    Article  Google Scholar 

  4. Crovella, M., Bestavros, A.: Self-similarity in world wide web traffic: Evidence and possible causes. IEEE/ACM Transactions on Networking 6, 835–846 (1997)

    Article  Google Scholar 

  5. Erramilli, A., Narayan, O., Willinger, W.: Experimental queueing analysis with long-range dependent packet traffic. IEEE/ACM Transactions on Networking 4, 209–223 (1996)

    Article  Google Scholar 

  6. Harmantzis, F.,, H.D.: Heavy network traffic modeling and simulation using stable farima processes. In: Proceedings of the 19th International Teletraffic Congress (2005)

    Google Scholar 

  7. Paxson, V.: Fast, Approximate Synthesis of Fractional Gaussian Noise for Generating Self-Similar Network Traffic. Computer Communications Review 27, 5–18 (1997)

    Article  Google Scholar 

  8. Politis, D., Romano, J.: The stationary bootstrap. Journal of the American Statistical Association 89, 1303–1313 (1994)

    Article  MATH  Google Scholar 

  9. Tewfik, A.H., Kim, M.: Correlation structure of the discrete wavelet coefficients of fractional brownian motion. IEEE Transactions on Information Theory 38, 904–909 (1992)

    Article  Google Scholar 

  10. Flandrin, P.: Wavelet analysis and synthesis of fractional brownian motion. IEEE Transactions on Information Theory 38, 910–917 (1992)

    Article  Google Scholar 

  11. Ma, S., Ji, C.: Modeling heterogeneous network traffic in wavelet domain. IEEE/ACM Transactions on Networking 9(5), 634–649 (2001)

    Article  Google Scholar 

  12. Efron, B.: Bootstrap methods: Another look at the jackknife. Annals of Statistics 7, 1–26 (1979)

    MATH  Google Scholar 

  13. Feng, H., Willemain, T.R., Shang, N.: Wavelet-based bootstrap for time series analysis. Communications in Statistics: Simulation and Computation 34(2), 393–413 (2005)

    Article  MATH  Google Scholar 

  14. Theiler, J., Eubank, S., Longtin, A., Galdrikian, B., Farmer, J.: Testing for nonlinearity in time series: The method of surrogate data. Physica D 58, 77–94 (1992)

    Article  Google Scholar 

  15. Percival, D.B., Sardy, S., Davison, A.C.: Wavestrapping time series: Adaptive wavelet-based bootstrapping. In: Fitzgerald, W.J., Smith, R.L., Walden, A.T., Young, P.C. (eds.) Nonliner and Nonstationary Signal Processing, pp. 442–470. Cambridge University Press, Cambridge, England (2001)

    Google Scholar 

  16. Angelini, C., Cada, D., Katul, G., Vidakovic, B.: Resampling hierarchical processes in the wavelet domain: A case study using atmospheric turbulence. Physica D: Nonlinear Phenomena 207(1-2), 24–40 (2005)

    Article  Google Scholar 

  17. Stoev, S., Taqqu, M.S.: Asymptotic self-similarity and wavelet estimation for long-range dependent fractional autoregressive integrated moving average time series with stable innovations. Journal of Time Series Analysis 26(2), 211–249 (2005)

    Article  MATH  Google Scholar 

  18. Box, G.E.P., Cox, D.R.: An analysis of transformations. Journal of Royal Statistical Socienty, Series B 26(2), 211–252 (1964)

    MATH  Google Scholar 

  19. Cooperative Association for Internet Data Analysis (2006), http://www.caida.org/data/passive/index.xml

  20. University of North Carolina - Network Data Analysis Study Group (2006), http://www-dirt.cs.unc.edu/unc02_ts

  21. Riedi, R., Crouse, M., Riberiro, V.V., Baraniuk, R.: A multifractal wavelet model with application to network traffic. IEEE Transactions on Information Theory 45, 992–1019 (1999)

    Article  MATH  Google Scholar 

  22. Veitch, D., Abry, P.: A wavelet based joint estimator of the parameters of long-range dependence. IEEE Transactions on Information Theory 45, 878–897 (1999)

    Article  MATH  Google Scholar 

  23. R. Riedi and J. Vehel, “Multifractal properties of tcp traffic: a numerical study,” INRIA, Tech. Rep. RR-3129, (1997) [Online]. Available: http://www.inria.fr/rrrt/rr-3129.html

  24. Nogueira, A., Salvador, P., Valadas, R.: Modeling network traffic with multifractal behavior. 10th International Conference on Telecommunications 2, 1071–1077 (2003)

    Google Scholar 

  25. Veitch, D.: Matlab code for the estimation of MultiScaling Exponents (2004), http://www.cubinlab.ee.mu.oz.au/~darryl/MS_code.html

  26. Jeong, H.-D., McNickle, D., Pawlikowski, K.: Fast Self-Similar Teletraffic Generation Based on FGN and Wavelets. In: IEEE International Conference on Networks, pp. 75–82. IEEE Computer Society Press, Los Alamitos (1999)

    Google Scholar 

  27. Karasaridis, A., Hatzinakos, D.: Network Heavy Traffic Modeling Using α-Stable Self-Similar Processes. IEEE Transactions On Communications 49, 1203–1214 (2001)

    Article  MATH  Google Scholar 

  28. Breakspear, M., Brammer, M., Robinson, P.A.: Construction of multivariate surrogate sets from nonlinear data using the wavelet transform. Physica D: Nonlinear Phenomena 182(1-2), 1–22 (2003)

    Article  MATH  Google Scholar 

  29. Grau-Carles, P.: Tests of long memory: A bootstrap approach. Computational Economics 25(1-2), 103–113 (2005)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Lorne Mason Tadeusz Drwiega James Yan

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chatterjee, S., MacGregor, M., Bates, S. (2007). Generating LRD Traffic Traces Using Bootstrapping. In: Mason, L., Drwiega, T., Yan, J. (eds) Managing Traffic Performance in Converged Networks. ITC 2007. Lecture Notes in Computer Science, vol 4516. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72990-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72990-7_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72989-1

  • Online ISBN: 978-3-540-72990-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics