Skip to main content

Algebraic Model of an Arithmetic Unit for TTE-Computable Normalized Rational Numbers

  • Conference paper
Computation and Logic in the Real World (CiE 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4497))

Included in the following conference series:

  • 1270 Accesses

Abstract

A formal specification of an arithmetic unit for computable normalized rational numbers is proposed. This specification, developed under the scope of the paradigm known as algebraic models of processors, exploits the connection between the signed digit representation for rational numbers in Type-2 Theory of Effectivity and online arithmetic in Computer Arithmetic. The proposal aims for specification formalization and calculation reliability together with implementation feasibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andrews, D., Sass, R., Anderson, E., Agron, J., Peck, W., Stevens, J., Baijot, F., Komp, E.: The Case for High Level Programming Models for Reconfigurable Computers. In: Proc. of the 2006 International Conference on Engineering of Reconfigurable Systems & Algorithms, pp. 21–32 (2006)

    Google Scholar 

  2. Avizienis, A.: Signed-digit number representations for fast parallel arithmetic. IRE Trans. Electronic Computers 10, 389–400 (1961)

    Article  MathSciNet  Google Scholar 

  3. Blanck, J.: Exact real arithmetic systems: Results of competition, Computability and Complexity in Analysis. In: Blank, J., Brattka, V., Hertling, P. (eds.) CCA 2000. LNCS, vol. 2064, pp. 390–394. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Blanck, J.: Exact real arithmetic using centred intervals and bounded error terms. Journal of Logic and Algebraic Programming 66, 207–240 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Borkar, S.: Getting Gigascale Chips: Challenges and Opportunities in Continuing Moore’s Law. ACM Queue 1(7), 26–33 (2003)

    Article  Google Scholar 

  6. de Miguel Casado, G., García Chamizo, J.M.: The Role of Algebraic Models and Type-2 Theory of Effectivity in Special Purpose Processor Design. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988, pp. 137–146. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Ercegovac, M.D., Lang, T.: Digital Arithmetic. M. Kaufmann, Seattle (2004)

    Google Scholar 

  8. Fox, A.C.J., Harman, N.A.: Algebraic Models of Correctness for Abstract Pipelines. The Journal of Algebraic and Logic Programming 57(1-2), 71–107 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gowland, P., Lester, D.: A Survey of Exact Arithmetic Implementations. In: Blank, J., Brattka, V., Hertling, P. (eds.) CCA 2000. LNCS, vol. 2064, pp. 30–47. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Harman, N.A. and Tucker, J.V.: Algebraic models of microprocessors: the verification of a simple computer. In: V Stravridou (ed), Mathematics of Dependable Systems II. Oxford : Clarendon Press; New York, Oxford University Press, (1997) 135–170

    Google Scholar 

  11. Harman, N.A.: Models of Timing Abstraction in Simultaneous Multithreaded and Multi-Core Processors, Logical Approaches to Computational Barriers, Report Series, Vol. CSR 7-2006, (2006) 129–139

    Google Scholar 

  12. Hayes, B.: A Lucid Interval. American Scientist 91, 484–488 (2003)

    Article  Google Scholar 

  13. ISSCC Roundtable: Embedded Memories for the Future, IEEE Design and Test of Computers, vol. 20, pp. 66–81 (2003)

    Google Scholar 

  14. Lynch, T., Schulte, M.: A High Radix On-line Arithmetic for Credible and Accurate Computing. Journal of UCS 1, 439–453 (1995)

    MathSciNet  MATH  Google Scholar 

  15. Post, D.E., Votta, L.G.: Computational science demands a new paradigm. Physics today 58(1), 35–41 (2005)

    Article  Google Scholar 

  16. Schröder, M.: Admissible Representations in Computable Analysis. In: Calamoneri, T., Finocchi, I., Italiano, G.F. (eds.) CIAC 2006. LNCS, vol. 3998, pp. 471–480. Springer, Heidelberg (2006)

    Google Scholar 

  17. Weihrauch, K.: Computable Analysis. Springer, Heidelberg (2000)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

de Miguel Casado, G., García Chamizo, J.M., Signes Pont, M.T. (2007). Algebraic Model of an Arithmetic Unit for TTE-Computable Normalized Rational Numbers. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds) Computation and Logic in the Real World. CiE 2007. Lecture Notes in Computer Science, vol 4497. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73001-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73001-9_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73000-2

  • Online ISBN: 978-3-540-73001-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics