Skip to main content

Abstract Geometrical Computation and the Linear Blum, Shub and Smale Model

  • Conference paper
Computation and Logic in the Real World (CiE 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4497))

Included in the following conference series:

  • 1349 Accesses

Abstract

Abstract geometrical computation naturally arises as a continuous counterpart of cellular automata. It relies on signals (dimensionless points) traveling at constant speed in a continuous space in continuous time. When signals collide, they are replaced by new signals according to some collision rules. This simple dynamics relies on real numbers with exact precision and is already known to be able to carry out any (discrete) Turing-computation. The Blum, Shub and Small (BSS) model is famous for computing over ℝ (considered here as a ℝ unlimited register machine) by performing algebraic computations.

We prove that signal machines (set of signals and corresponding rules) and the infinite-dimension linear (multiplications are only by constants) BSS machines can simulate one another.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bournez, O., Campagnolo, M.L., Graça, D.S., Hainry, E.: The general purpose analog computer and computable analysis are two equivalent paradigms of analog computation. In: Cai, J.-Y., Cooper, S.B., Li, A. (eds.) TAMC 2006. LNCS, vol. 3959, pp. 631–643. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and real computation. Springer, New York (1998)

    Book  MATH  Google Scholar 

  3. Bournez, O., Hainry, E.: An analog characterization of elementarily computable functions over the real numbers. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 269–280. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Bournez, O.: Some bounds on the computational power of piecewise constant derivative systems. Theory of Computing Systems 32(1), 35–67 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  5. Durand-Lose, J.: Abstract geometrical computation for black hole computation (extended abstract). In: Margenstern, M. (ed.) MCU 2004. LNCS, vol. 3354, pp. 176–187. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Durand-Lose, J.: Abstract geometrical computation 1: embedding black hole computations with rational numbers. Fundamenta Informaticae 74(4), 491–510 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Durand-Lose, J.: Forcasting black holes in abstract geometrical computation is highly unpredictable. In: Cai, J.-Y., Cooper, S.B., Li, A. (eds.) TAMC 2006. LNCS, vol. 3959, pp. 644–653. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Durand-Lose, J.: Reversible conservative rational abstract geometrical computation is turing-universal. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988, pp. 163–172. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Koiran, P.: A weak version of the Blum, Shub & Smale model. In: 34th Annual Symposium on Foundations of Computer Science (FOCS ’93), pp. 486–495. IEEE, Washington (1993)

    Google Scholar 

  10. Meer, K., Michaux, C.: A survey on real structural complexity theory. Bulletin of the Belgian Mathematical Society 4, 113–148 (1997)

    MathSciNet  MATH  Google Scholar 

  11. Moore, C.: Recursion theory on the reals and continuous-time computation. Theoret. Comp. Sci. 162(1), 23–44 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Novak, E.: The real number model in numerical analysis. J. Complex. 11(1), 57–73 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  13. Weihrauch, K.: Introduction to computable analysis. In: Texts in Theoretical computer science, Springer, Berlin (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Durand-Lose, J. (2007). Abstract Geometrical Computation and the Linear Blum, Shub and Smale Model. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds) Computation and Logic in the Real World. CiE 2007. Lecture Notes in Computer Science, vol 4497. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73001-9_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73001-9_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73000-2

  • Online ISBN: 978-3-540-73001-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics