Abstract
Abstract geometrical computation naturally arises as a continuous counterpart of cellular automata. It relies on signals (dimensionless points) traveling at constant speed in a continuous space in continuous time. When signals collide, they are replaced by new signals according to some collision rules. This simple dynamics relies on real numbers with exact precision and is already known to be able to carry out any (discrete) Turing-computation. The Blum, Shub and Small (BSS) model is famous for computing over ℝ (considered here as a ℝ unlimited register machine) by performing algebraic computations.
We prove that signal machines (set of signals and corresponding rules) and the infinite-dimension linear (multiplications are only by constants) BSS machines can simulate one another.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bournez, O., Campagnolo, M.L., Graça, D.S., Hainry, E.: The general purpose analog computer and computable analysis are two equivalent paradigms of analog computation. In: Cai, J.-Y., Cooper, S.B., Li, A. (eds.) TAMC 2006. LNCS, vol. 3959, pp. 631–643. Springer, Heidelberg (2006)
Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and real computation. Springer, New York (1998)
Bournez, O., Hainry, E.: An analog characterization of elementarily computable functions over the real numbers. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 269–280. Springer, Heidelberg (2004)
Bournez, O.: Some bounds on the computational power of piecewise constant derivative systems. Theory of Computing Systems 32(1), 35–67 (1999)
Durand-Lose, J.: Abstract geometrical computation for black hole computation (extended abstract). In: Margenstern, M. (ed.) MCU 2004. LNCS, vol. 3354, pp. 176–187. Springer, Heidelberg (2005)
Durand-Lose, J.: Abstract geometrical computation 1: embedding black hole computations with rational numbers. Fundamenta Informaticae 74(4), 491–510 (2006)
Durand-Lose, J.: Forcasting black holes in abstract geometrical computation is highly unpredictable. In: Cai, J.-Y., Cooper, S.B., Li, A. (eds.) TAMC 2006. LNCS, vol. 3959, pp. 644–653. Springer, Heidelberg (2006)
Durand-Lose, J.: Reversible conservative rational abstract geometrical computation is turing-universal. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988, pp. 163–172. Springer, Heidelberg (2006)
Koiran, P.: A weak version of the Blum, Shub & Smale model. In: 34th Annual Symposium on Foundations of Computer Science (FOCS ’93), pp. 486–495. IEEE, Washington (1993)
Meer, K., Michaux, C.: A survey on real structural complexity theory. Bulletin of the Belgian Mathematical Society 4, 113–148 (1997)
Moore, C.: Recursion theory on the reals and continuous-time computation. Theoret. Comp. Sci. 162(1), 23–44 (1996)
Novak, E.: The real number model in numerical analysis. J. Complex. 11(1), 57–73 (1995)
Weihrauch, K.: Introduction to computable analysis. In: Texts in Theoretical computer science, Springer, Berlin (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Durand-Lose, J. (2007). Abstract Geometrical Computation and the Linear Blum, Shub and Smale Model. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds) Computation and Logic in the Real World. CiE 2007. Lecture Notes in Computer Science, vol 4497. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73001-9_25
Download citation
DOI: https://doi.org/10.1007/978-3-540-73001-9_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73000-2
Online ISBN: 978-3-540-73001-9
eBook Packages: Computer ScienceComputer Science (R0)