Skip to main content

Minimal Representations for Majority Games

  • Conference paper
Computation and Logic in the Real World (CiE 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4497))

Included in the following conference series:

Abstract

This paper presents some new results about majority games. Isbell (1959) was the first to find a majority game without a minimum normalized integer representation; he needed 12 voters to construct such a game. Since then, it has been an open problem to find the minimum number of voters of a majority game without a minimum normalized integer representation. Our main new results are:

1. All majority games with less than 9 voters have a minimum integer representation.

2. For 9 voters, there are 14 majority games without a minimum integer representation, but all these games admit a minimum normalized integer representation.

3. For 10 voters, there exist majority games with neither a minimum integer representation nor a minimum normalized integer representation.

This research was partially supported by Grant MTM 2006–06064 of “Ministerio de Ciencia y Tecnología y el Fondo Europeo de Desarrollo Regional” and SGRC 2005-00651 of “Generalitat de Catalunya”, and by the Spanish “Ministerio de Ciencia y Tecnología” programme TIN2005-05446 (ALINEX).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Carreras, F., Freixas, J.: Complete simple games. Mathematical Social Sciences 32, 139–155 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dubey, P., Shapley, L.S.: Mathematical properties of the Banzhaf power index. Mathematics of Operations Research 4(2), 99–131 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  3. Freixas, J.: Structure of simple games. PhD thesis, Technical University of Catalonia, Manresa (Barcelona), Spain, (October 1994) (In Spanish)

    Google Scholar 

  4. Freixas, J.: The dimension for the European Union Council under the Nice rules. European Journal of Operational Research 156(2), 415–419 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Freixas, J., Molinero, X.: On the existence of a minimum integer representation for weighted voting systems. Annals of Operations Research, (submitted, October 2006)

    Google Scholar 

  6. Freixas, J., Zwicker, W.S.: Weighted voting, abstention, and multiple levels of approval. Social Choice and Welfare 21, 399–431 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  7. Isbell, J.R.: A class of simple games. Duke. Mathematics Journal 25, 423–439 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  8. Isbell, J.R.: On the enumeration of majority games. Mathematical Tables and Other Aids. to Computation 13(65), 21–28 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  9. Maschler, M., Peleg, B.: A characterization, existence proof, and dimension bounds for the kernel of a game. Pacific Journal of Mathematics 18, 289–328 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  10. Muroga, S.: Threshold logic and its applications. Wiley-Interscience, New York, USA (1971)

    MATH  Google Scholar 

  11. Muroga, S., Toda, I., Kondo, M.: Majority decision functions of up to six variables. Mathematics of Computation 16(80), 459–472 (1962)

    Article  MATH  Google Scholar 

  12. Muroga, S., Toda, I., Takasu, S.: Theory of majority decision elements. J. Franklin Inst. 271(5), 376–418 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  13. Muroga, S., Tsuboi, T., Baugh, C.R.: Enumeration of threshold funcitons of eight variables. IEEE Trans. Computers 19(9), 818–825 (1970)

    Article  MATH  Google Scholar 

  14. Von Neumann, J., Morgenstern, O.: Theory of Games and Economic Behavior. Princeton University Press, Princeton, New Jersey, USA (1944)

    MATH  Google Scholar 

  15. Taylor, A.D.: Mathematics and Politics. Springer, New York, USA (1995)

    Book  MATH  Google Scholar 

  16. Taylor, A.D., Zwicker, W.S.: Simple games: desirability relations, trading, and pseudoweightings. Princeton University Press, New Jersey, USA (1999)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Freixas, J., Molinero, X., Roura, S. (2007). Minimal Representations for Majority Games. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds) Computation and Logic in the Real World. CiE 2007. Lecture Notes in Computer Science, vol 4497. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73001-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73001-9_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73000-2

  • Online ISBN: 978-3-540-73001-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics