Abstract
We introduce, and show the equivalences among, relativized versions of Brouwer’s fan theorem for detachable bars (FAN), weak König lemma with a uniqueness hypothesis (WKL!), and the longest path lemma with a uniqueness hypothesis (LPL!) in the spirit of constructive reverse mathematics. We prove that a computable version of minimum principle: if f is a real valued computable uniformly continuous function with at most one minimum on {0,1}N, then there exists a computable α in {0,1}N such that \(f(\alpha) = \inf f(\{0,1\}^\mathbf{N})\), is equivalent to some computably relativized version of FAN, WKL! and LPL!.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Berger, J., Bridges, D., Schuster, P.: The fan theorem and unique existence of maxima. J. Symbolic Logic 71, 713–720 (2006)
Berger, J., Ishihara, H.: Brouwer’s fan theorem and unique existence in constructive analysis. MLQ Math. Log. Q. 51, 360–364 (2005)
Bishop, E.: Foundations of Constructive Analysis. McGraw-Hill, New York (1967)
Bishop, E., Bridges, D.: Constructive Analysis. Springer, Berlin (1985)
Bridges, D.: Recent progress in constructive approximation theory. In: Troelstra, A.S., van Dalen, D. (eds.) The L.E.J Brouwer Centenary Symposium, pp. 41–50. North-Holland, Amsterdam (1982)
Bridges, D., Richman, F.: Varieties of Constructive Mathematics. Cambridge University Press, Cambridge (1987)
Ishihara, H.: An omniscience principle, the König lemma and the Hahn-Banach theorem. Z. Math. Logik Grundlag. Math. 36. 237–240 (1990)
Ishihara, H.: Constructive reverse mathematics: compactness properties. In: Crosilla, L., Schuster, P. (eds.) From Sets and Types to Topology and Analysis, pp. 245–267. Oxford Univ. Press, Oxford (2005)
Ishihara, H.: Reverse mathematics in Bishop’s constructive mathematics. Philosophia Scientiæ, Cahier spécial 6, 43–59 (2006)
Ishihara, H.: Weak König lemma implies Brouwer’s fan theorem: a direct proof. Notre Dame J. Formal Logic 47, 249–252 (2006)
Julian, W., Richman, F.: A uniformly continuous function on [0,1] that is everywhere different from its infimum. Pacific J. Math. 111, 333–340 (1984)
Kleene, S.C.: Recursive functions and intuitionistic mathematics. In: Graves, L.M., Hille, E., Smith, P.A., Zariski, O. (eds.) Proceedings of the International Congress of Mathematicians, Amer. Math. Soc. Providence, pp. 679–685 (1952)
Kleene, S.C., Vesley, R.E.: The Foundations of Intuitionistic Mathematics, Especially in Relation to Recursive Functions. North-Holland, Amsterdam (1965)
Kohlenbach, U.: Effective moduli from ineffective uniqueness proofs: An unwinding of de La Vallée Poussin’s proof for Chebycheff approximation. Ann. Pure Appl. Logic 64, 27–94 (1993)
Kohlenbach, U., Oliva, P.: Proof mining: a systematic way of analysing proofs in mathematics. In: Proc. Steklov Inst. Math. vol. 242, pp. 136–164 (2003)
Loeb, I.: Equivalents of the (weak) fan theorem. Ann. Pure Appl. Logic 132, 51–66 (2005)
Schuster, P.: Unique solutions. MLQ Math. Log. Q. 52, 534–539 (2006)
Schwichtenberg, H.: A direct proof of the equivalence between Brouwer’s fan theorem and König lemma with a uniqueness hypothesis. J. UCS 11, 2086–2095 (2005)
Simpson, S.G.: Subsystems of second order arithmetic. Springer, Berlin (1999)
Troelstra, A.S., van Dalen, D.: Constructivism in Mathematics, Vol. I An Introduction. North-Holland, Amsterdam (1988)
Veldman, W.: Brouwer’s fan theorem as an axiom and as a contrast to Kleene’s alternative. Radboud University, Nijmegen (2005) (preprint)
Weihrauch, K.: Computable Analysis. Springer, Berlin (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Ishihara, H. (2007). Unique Existence and Computability in Constructive Reverse Mathematics. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds) Computation and Logic in the Real World. CiE 2007. Lecture Notes in Computer Science, vol 4497. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73001-9_38
Download citation
DOI: https://doi.org/10.1007/978-3-540-73001-9_38
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73000-2
Online ISBN: 978-3-540-73001-9
eBook Packages: Computer ScienceComputer Science (R0)