Skip to main content

Confluence of Cut-Elimination Procedures for the Intuitionistic Sequent Calculus

  • Conference paper
Computation and Logic in the Real World (CiE 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4497))

Included in the following conference series:

Abstract

We prove confluence of two cut-elimination procedures for the implicational fragment of a standard intuitionistic sequent calculus. One of the cut-elimination procedures uses global proof transformations while the other consists of local ones. Both of them include permutation of cuts to simulate β-reduction in an isomorphic image of the λ-calculus. We establish the confluence properties through a conservativity result on the cut-elimination procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bloo, R., Geuvers, H.: Explicit substitution: On the edge of strong normalization. Theoretical Computer Science 211, 375–395 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Danos, V., Joinet, J.-B., Schellinx, H.: A new deconstructive logic: Linear logic. The Journal of Symbolic Logic 62, 755–807 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Espírito Santo, J.: Revisiting the correspondence between cut elimination and normalisation. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 600–611. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  4. Gentzen, G.: Untersuchungen über das logische Schliessen. Mathematische Zeitschrift, 39: pp. 176–210, pp. 405–431, English translation in [9 pp. 68–131] (1935)

    Google Scholar 

  5. Girard, J.-Y.: Linear logic. Theoretical Computer Science 50, 1–102 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hardin, T.: Résultats de confluence pour les règles fortes de la logique combinatoire catégorique et liens avec les lambda-calculs. Thèse de doctorat, Université de Paris VII (1987)

    Google Scholar 

  7. Howard, W.A.: The formulae-as-types notion of construction. In: Seldin, J.P., Hindley, J.R. (eds.) To H. B. Curry: Essays on Combinatory Logic, Lambda-Calculus and Formalism, pp. 479–490. Academic Press, San Diego (1980)

    Google Scholar 

  8. Kikuchi, K.: On a local-step cut-elimination procedure for the intuitionistic sequent calculus. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI), vol. 4246, pp. 120–134. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Szabo, M.E. (ed.): The Collected Papers of Gerhard Gentzen. North-Holland, Amsterdam (1969)

    MATH  Google Scholar 

  10. Takahashi, M.: Parallel reductions in λ-calculus. Information and Computation 118, 120–127 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Urban, C., Bierman, G.M.: Strong normalisation of cut-elimination in classical logic. Fundamenta Informaticae 45, 123–155 (2001)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kikuchi, K. (2007). Confluence of Cut-Elimination Procedures for the Intuitionistic Sequent Calculus. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds) Computation and Logic in the Real World. CiE 2007. Lecture Notes in Computer Science, vol 4497. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73001-9_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73001-9_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73000-2

  • Online ISBN: 978-3-540-73001-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics