Skip to main content

A Comparative Study of PCA, ICA and Class-Conditional ICA for Naïve Bayes Classifier

  • Conference paper
Computational and Ambient Intelligence (IWANN 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4507))

Included in the following conference series:

  • 2575 Accesses

Abstract

The performance of the Naïve Bayes classifier can be improved by appropriate preprocessing procedures. This paper presents a comparative study of three preprocessing procedures, namely Principle Component Analysis (PCA), Independent Component Analysis (ICA) and class-conditional ICA, for Naïve Bayes classifier. It is found that all the three procedures keep improving the performance of the Naïve Bayes classifier with the increase of the number of attributes. Although class-conditional ICA has been found to be superior to PCA and ICA in most cases, it may not be suitable for the case where the sample size for each class is not large enough.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Langley, P., Iba, W., Thompson, K.: An Analysis of Bayesian Classifiers. In: Proceedings of the Tenth National Conference on Artificial Intelligence, pp. 223–228. AAAI Press, San Jose (1992)

    Google Scholar 

  2. Friedman, N., Geiger, D., Goldszmidt, M.: Bayesian Network Classifiers. Machine Learning 29, 131–163 (1997)

    Article  MATH  Google Scholar 

  3. Sandberg, R., Winberg, G., Bränden, C., Kaske, A., Ernberg, I., Cöster, J.: Capturing Whole-Genome Characteristics in Short Sequences Using a Naïve Bayesian Classifier. Genome Research 11, 1404–1409 (2001)

    Article  Google Scholar 

  4. Rennie, J.D.M., Shih, L., Teevan, J., Karger, D.R.: Tackling the Poor Assumptions of Naïve Bayes Text Classifiers. In: Fawcett, T., Mishra, N. (eds.) Proceedings of the Twentieth International Conference on Machine Learning, pp. 616–623. AAAI Press, Menlo Park (2003)

    Google Scholar 

  5. Li, Y., Anderson-Sprecher, R.: Facies Identification from Well Logs: A Comparison of Discriminant Analysis and Naïve Bayes Classifier. Journal of Petroleum Science and Engineering 53, 149–157 (2006)

    Article  Google Scholar 

  6. Cheng, J., Greiner, R.: Comparing Bayesian Network Classifiers. In: Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence (UAI’99), pp. 101–107. Morgan Kaufmann Publishers, Washington (1999)

    Google Scholar 

  7. Gupta, G.K.: Principal Component Analysis and Bayesian Classifier Based on Character Recognition. In: Gary, E., Zhai, Y. (eds.) Bayesian Inference and Maximum Entropy Methods in Science and Engineering. AIP Conference Proceedings, vol. 707, pp. 465–479. Springer, Berlin (2004)

    Google Scholar 

  8. Prasad, M.N., Sowmya, A., Koch, I.: Feature Subset Selection using ICA for Classifying Emphysema in HRCT Images. In: Kittler, J., Petrou, M., Nixon, M.S. (eds.) Proceedings of the 17th International Conference on Pattern Recognition, pp. 515–518. IEEE-CS Press, Washington (2004)

    Chapter  Google Scholar 

  9. Bressan, M., Vitria, J.: Improving Naïve Bayes Using Class-conditional ICA. In: Garijo, F.J., Riquelme, J.-C., Toro, M. (eds.) IBERAMIA 2002. LNCS (LNAI), vol. 2527, pp. 1–10. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  10. Vitria, J., Bressan, M., Radeva, P.: Bayesian Classification of Cork Stoppers Using Class-conditional Independent Component Analysis. IEEE Transactions on Systems, Man and Cybernetics C 37, 32–38 (2007)

    Article  Google Scholar 

  11. Haykin, S.: Neural Netwoks: A Comprehensive Foundation. Prentice Hall, Englewood Cliffs (1999)

    MATH  Google Scholar 

  12. Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley and Sons, New York (2001)

    Google Scholar 

  13. Hyvärinen, A., Oja, E.: Independent Component Analysis: Algorithms and Applications. Neural Networks 13, 411–430 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Francisco Sandoval Alberto Prieto Joan Cabestany Manuel Graña

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fan, L., Poh, K.L. (2007). A Comparative Study of PCA, ICA and Class-Conditional ICA for Naïve Bayes Classifier. In: Sandoval, F., Prieto, A., Cabestany, J., Graña, M. (eds) Computational and Ambient Intelligence. IWANN 2007. Lecture Notes in Computer Science, vol 4507. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73007-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73007-1_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73006-4

  • Online ISBN: 978-3-540-73007-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics