Skip to main content

A Software Framework for Tuning the Dynamics of Neuromorphic Silicon Towards Biology

  • Conference paper
Computational and Ambient Intelligence (IWANN 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4507))

Included in the following conference series:

Abstract

This paper presents configuration methods for an existing neuromorphic hardware and shows first experimental results. The utilized mixed-signal VLSI device implements a highly accelerated network of integrate-and-fire neurons. We present a software framework, which provides the possibility to interface the hardware and explore it from the point of view of neuroscience. It allows to directly compare both spike times and membrane potentials which are emulated by the hardware or are computed by the software simulator NEST, respectively, from within a single software scope. Membrane potential and spike timing dependent plasticity measurements are shown which illustrate the capabilities of the software framework and document the functionality of the chip.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J.M., Diesmann, M., Morrison, A., Goodman, P.H., Harris Jr., F.C., Zirpe, M., Natschlager, T., Pecevski, D., Ermentrout, B., Djurfeldt, M., Lansner, A., Rochel, O., Vieville, T., Muller, E., Davison, A.P., Boustani, S.E., Destexhe, A.: Simulation of networks of spiking neurons: A review of tools and strategies (2006)

    Google Scholar 

  2. Indiveri, G., Chicca, E., Douglas, R.: A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity. IEEE Transactions on Neural Networks 17(1), 211–221 (2006)

    Article  Google Scholar 

  3. Schemmel, J., Grübl, A., Meier, K., Mueller, E.: Implementing synaptic plasticity in a VLSI spiking neural network model. In: Proceedings of the 2006 International Joint Conference on Neural Networks (IJCNN’06), IEEE Computer Society Press, Los Alamitos (2006)

    Google Scholar 

  4. Schemmel, J., Brüderle, D., Meier, K., Ostendorf, B.: Modeling synaptic plasticity within networks of highly accelerated I&F neurons. In: Proceedings of the 2007 IEEE International Symposium on Circuits and Systems (ISCAS’07), IEEE Computer Society Press, Los Alamitos (2007)

    Google Scholar 

  5. The Neural Simulation Technology (NEST) Initiative (2007), Homepage: http://www.nest-initiative.org

  6. Fast Analog Computing with Emergent Transient States (FACETS): Homepage, http://www.facets-project.org

  7. The Python Programming Language (2007), Homepage, http://www.python.org

  8. Destexhe, A., Contreras, D., Steriade, M.: Mechanisms underlying the synchronizing action of corticothalamic feedback through inhibition of thalamic relay cells. Journal of Neurophysiology 79, 999–1016 (1998)

    Google Scholar 

  9. Dayan, P., Abott, L.F.: Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  10. Song, S., Miller, K., Abbott, L.: Competitive hebbian learning through spiketiming-dependent synaptic plasticity. Nat. Neurosci. 3, 919–926 (2000)

    Article  Google Scholar 

  11. Bi, G., Poo, M.: Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type. Neural Computation 9, 503–514 (1997)

    Article  Google Scholar 

  12. Muller, E.B.: Markov Process Models for Neural Ensembles with Spike-Frequency Adaptation. PhD thesis, Ruprecht-Karls University, Heidelberg (2006)

    Google Scholar 

  13. Fieres, J.: A Method for Image Classification Using Low-Precision Analog Computing Arrays. PhD thesis, Ruprecht-Karls University, Heidelberg (2006)

    Google Scholar 

  14. van Rossum, M.C.W.: A novel spike distance. Neural Computation 13(4), 751–763 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Francisco Sandoval Alberto Prieto Joan Cabestany Manuel Graña

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brüderle, D., Grübl, A., Meier, K., Mueller, E., Schemmel, J. (2007). A Software Framework for Tuning the Dynamics of Neuromorphic Silicon Towards Biology. In: Sandoval, F., Prieto, A., Cabestany, J., Graña, M. (eds) Computational and Ambient Intelligence. IWANN 2007. Lecture Notes in Computer Science, vol 4507. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73007-1_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73007-1_59

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73006-4

  • Online ISBN: 978-3-540-73007-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics