Skip to main content

Consumer Profile Identification and Allocation

  • Conference paper
Computational and Ambient Intelligence (IWANN 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4507))

Included in the following conference series:

  • 1763 Accesses

Abstract

We propose an easy-to-use methodology to allocate one of the groups which have been previously built from a complete learning data base, to new individuals. The learning data base contains continuous and categorical variables for each individual. The groups (clusters) are built by using only the continuous variables and described with the help of the categorical ones. For the new individuals, only the categorical variables are available, and it is necessary to define a model which computes the probabilities to belong to each of the clusters, by using only the categorical variables. Then this model provides a decision rule to assign the new individuals and gives an efficient tool to decision-makers.

This tool is shown to be very efficient for customers allocation in consumer clusters for marketing purposes, for example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Allison, P.: Logistic Regression Using The SAS System. Theory and Application. SAS Institute Inc. Cary, NC (1999)

    Google Scholar 

  2. Cottrell, M., Rousset, P.: The Kohonen algorithm: a powerful tool for analysing and representing multidimensional quantitative et qualitative data. In: Cabestany, J., Mira, J., Moreno-Díaz, R. (eds.) IWANN 1997. LNCS, vol. 1240, pp. 861–871. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  3. Cottrell, M., Fort, J.C., Pagés, G.: Theoretical aspects of the SOM Algorithm. Neurocomputing 21, 119–138 (1998)

    Article  MATH  Google Scholar 

  4. Cottrell, M., Letrémy, P.: Missing values: processing with the Kohonen algorithm. In: Proc. ASMDA, Brest, pp. 489–496 (2005), http://asmda2005.enst-bretagne.fr

  5. Cottrell, M., Gaubert, P., Letrémy, P., Rousset, P.: Analyzing and representing multidimensional quantitative and qualitative data: Demographic study of the Rhöne valley. In: Oja, E., Kaski, S. (eds.) The domestic consumption of the Canadian families, WSOM’99, Kohonen Maps, pp. 1–14. Elsevier, Amsterdam (1999)

    Google Scholar 

  6. de Bodt, E., Cottrell, M., Letrémy, P., Verleysen, M.: On the use of self-organizing maps to accelerate vector quantization. Neurocomputing 56, 187–203 (2003)

    Google Scholar 

  7. Ibbou, S.: Classification, analyse des correspondances et méthodes neuronales. PhD Thesis, Université Paris 1-Panthéon-Sorbonne (1998)

    Google Scholar 

  8. Kaski, S.: Data Exploration Using Self-Organizing Maps, Acta Polytechnica Scadinavia, Mathematics, Computing and Management in Engineering Series, N° 82 (D. Sc. Thesis, Helsinki, University of Technology) (1887) (1997)

    Google Scholar 

  9. Kohonen, T.: Self-Organization and Associative Maps. Springer Series in Information Sciences, vol. 8. Springer, Heidelberg (1984)

    Google Scholar 

  10. Kohonen, T.: Self-Organizing Maps. Springer Series in Information Sciences, vol. 30. Springer, Heidelberg (1995)

    Google Scholar 

  11. Letrémy, P., Cottrell, M., Esposito, E., Laffite, V., Showk, S.: The ”profilograph”: a toolbox for the analysis and the segmentation of gas load curves. In: Proc. WSOM 05, pp. 447–454 (2005)

    Google Scholar 

  12. Maddala, G.: Limited-dependent and qualitative variables in econometrics. Cambridge University Press, Cambridge (1983)

    MATH  Google Scholar 

  13. Oja, E., Kaski, S.: Kohonen Maps. Elsevier, Amsterdam (1999)

    MATH  Google Scholar 

  14. Rao, C.R.: Linear Statistical Inference and its applications, 2nd edn. Wiley, New York (1973)

    MATH  Google Scholar 

  15. Schmidt, P., Strauss, R.P.: The Prediction of Occupation Using Multiple Logit Models. International Economic Review 16(2) (1975)

    Google Scholar 

  16. Train, K.: Qualitative Choice Analysis. The MIT Press, Cambridge (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Francisco Sandoval Alberto Prieto Joan Cabestany Manuel Graña

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Letrémy, P., Cottrell, M., Esposito, E., Laffite, V., Showk, S. (2007). Consumer Profile Identification and Allocation. In: Sandoval, F., Prieto, A., Cabestany, J., Graña, M. (eds) Computational and Ambient Intelligence. IWANN 2007. Lecture Notes in Computer Science, vol 4507. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73007-1_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73007-1_65

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73006-4

  • Online ISBN: 978-3-540-73007-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics