Skip to main content

Neural Gas Clustering for Dissimilarity Data with Continuous Prototypes

  • Conference paper
Computational and Ambient Intelligence (IWANN 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4507))

Included in the following conference series:

Abstract

Prototype based neural clustering or data mining methods such as the self-organizing map or neural gas constitute intuitive and powerful machine learning tools for a variety of application areas. However, the classical methods are restricted to data embedded in a real vector space and have only limited applicability to noneuclidean data as occurs in, for example, biomedical or symbolic fields. Recently, extensions of unsupervised neural prototype based clustering to dissimilarity data, i.e. data characterized in terms of a dissimilarity matrix only, have been proposed substituting the mean by the so-called generalized median. Thereby, the location of prototypes is chosen within the discrete input space which constitutes a severe limitation in particular for sparse data sets since the prototype flexibility is restricted. Here we present a generalization of median neural gas such that prototypes can be interpreted as mixtures of discrete input locations. We derive a batch optimization scheme based on a corresponding cost function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barreto, G., Araujo, A., Kremer, S.: A taxonomy for spatiotemporal connectionist networks revisited: the unsupervised case. Neural Computation 15, 1255–1320 (2003)

    Article  MATH  Google Scholar 

  2. Conan-Guez, B., Rossi, F., El Golli, A.: A fast algorithm for the self-organizing map on dissimilarity data. In: Workshop on Self-Organizing Maps, pp. 561–568 (2005)

    Google Scholar 

  3. Cottrell, M., Hammer, B., Hasenfuss, A., Villmann, T.: Batch and median neural gas. Neural Networks 19, 762–771 (2006)

    Article  MATH  Google Scholar 

  4. Graepel, T., Obermayer, K.: A stochastic self-organizing map for proximity data. Neural Computation 11, 139–155 (1999)

    Article  Google Scholar 

  5. Haasdonk, B., Bahlmann, C.: Learning with Distance Substitution Kernels. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) DAGM 2004. LNCS, vol. 3175, pp. 220–227. Springer, Heidelberg (2004)

    Google Scholar 

  6. Hammer, B., Hasenfuss, A., Schleif, F.-M., Villmann, T.: Supervised median neural gas. In: Dagli, C., Buczak, A., Enke, D., Embrechts, A., Ersoy, O. (eds.) Intelligent Engineering Systems Through Artificial Neural Networks 16, Smart Engineering System Design, pp. 623–633. ASME Press, New York (2006)

    Google Scholar 

  7. Hammer, B., Hasenfuss, A., Schleif, F.-M., Villmann, T.: Supervised batch neural gas. In: Schwenker, F., Marinai, S. (eds.) ANNPR 2006. LNCS (LNAI), vol. 4087, pp. 33–45. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Hammer, B., Micheli, A., Sperduti, A., Strickert, M.: Recursive self-organizing network models. Neural Networks 17(8-9), 1061–1086 (2004)

    Article  MATH  Google Scholar 

  9. Heskes, T.: Energy functions for self-organizing maps. In: Oja, E., Kaski, S. (eds.) Kohonen maps, pp. 303–315. Elsevier, Amsterdam (1999)

    Chapter  Google Scholar 

  10. MacQueen, J.B.: Some methods for classification and analysis of multivariate observations. In: LeCam, L.M., Neyman, J. (eds.) Proc. 5th Berkeley Symposium on Math. Stat. and Prob., pp. 281–297. University of California Press, Berkeley (1967)

    Google Scholar 

  11. Kohonen, T.: Self-Organizing Maps. Springer, Heidelberg (1995)

    Google Scholar 

  12. Kohonen, T., Somervuo, P.: How to make large self-organizing maps for nonvectorial data. Neural Networks 15, 945–952 (2002)

    Article  Google Scholar 

  13. Martinetz, T., Berkovich, S.G., Schulten, K.J.: Neural-gas network for vector quantization and its application to time-series prediction. IEEE Transactions on Neural Networks 4, 558–569 (1993)

    Article  Google Scholar 

  14. Martinetz, T., Schulten, K.J.: Topology representing networks. Neural Networks 7(3), 507–522 (1994)

    Article  Google Scholar 

  15. Mevissen, H., Vingron, M.: Quantifying the local reliability of a sequence alignment. Protein Engineering 9, 127–132 (1996)

    Article  Google Scholar 

  16. Neuhaus, M., Bunke, H.: Edit distance based kernel functions for structural pattern classification. Pattern Recognition 39(10), 1852–1863 (2006)

    Article  MATH  Google Scholar 

  17. Qin, A.K., Suganthan, P.N.: Kernel neural gas algorithms with application to cluster analysis. In: ICPR 2004, vol. 4, pp. 617–620 (2004)

    Google Scholar 

  18. Seo, S., Obermayer, K.: Self-organizing maps and clustering methods for matrix data. Neural Networks 17, 1211–1230 (2004)

    Article  MATH  Google Scholar 

  19. Yin, H.: On the equivalence between kernel self-organising maps and self-organising mixture density network. Neural Networks 19(6), 780–784 (2006)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Francisco Sandoval Alberto Prieto Joan Cabestany Manuel Graña

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hasenfuss, A., Hammer, B., Schleif, FM., Villmann, T. (2007). Neural Gas Clustering for Dissimilarity Data with Continuous Prototypes. In: Sandoval, F., Prieto, A., Cabestany, J., Graña, M. (eds) Computational and Ambient Intelligence. IWANN 2007. Lecture Notes in Computer Science, vol 4507. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73007-1_66

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73007-1_66

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73006-4

  • Online ISBN: 978-3-540-73007-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics