Skip to main content

Low Complexity MLP-Based Radar Detector: Influence of the Training Algorithm and the MLP Size

  • Conference paper
Computational and Ambient Intelligence (IWANN 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4507))

Included in the following conference series:

Abstract

MultiLayer Perceptrons (MLPs) trained in a supervised way to minimize the Mean Square Error are able to approximate the Neyman-Pearson detector. The known target detection in a Weibull-distributed clutter and white Gaussian noise is considered. Because the difficulty to obtain analytical expressions for the optimum detector under this environment, a suboptimum detector like the Target Sequence Known A Priori (TSKAP) detector is taken as reference. The results show a MLP-based detector dependency with the training algorithm for low MLP sizes, being the Levenberg-Marquardt algorithm better than the Back-Propagation one. On the other hand, this dependency does not exist for high MLP sizes. Also, this detector is sensitive to the MLP size, but for sizes greater than 20 hidden neurons, very low improvement is achieved. So, the MLP-based detector is better than the TSKAP one, even for very low complexity (6 inputs, 5 hidden neurons and 1 output) MLPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. de la Mata-Moya, D., Jarabo-Amores, P., Rosa-Zurera, M., López-Ferreras, F., Vicen-Bueno, R.: Approximating the Neyman-Pearson Detector for Swerling I Targets with Low Complexity Neural Networks. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005. LNCS, vol. 3697, pp. 917–922. Springer, Heidelberg (2005)

    Google Scholar 

  2. Van Trees, H.L.: Detection, Estimation and Modulation Theory. Part I. John Wiley and Sons, New York (1997)

    Google Scholar 

  3. Cheikh, K., Faozi, S.: Application of Neural Networks to Radar Signal Detection in K-distributed Clutter. In: First Int. Symp. on Control, Communications and Signal Processing Workshop Proc., pp. 633–637 (2004)

    Google Scholar 

  4. Farina, A., et al.: Theory of Radar Detection in Coherent Weibull Clutter. In: Farina, A. (ed.) Optimised Radar Processors. IEE Radar, Sonar, Navigation and Avionics Series, vol. 1, pp. 100–116. Peter Peregrinus Ltd., London (1987)

    Google Scholar 

  5. DiFranco, J.V., Rubin, W.L.: Radar Detection. Artech House, Boston (1980)

    Google Scholar 

  6. Farina, A., et al.: Radar Detection in Coherent Weibull Clutter. IEEE Trans. on Acoustics, Speech and Signal Processing 35(6), 893–895 (1987)

    Article  MathSciNet  Google Scholar 

  7. Ruck, D.W., et al.: The Multilayer Perceptron as an Approximation to a Bayes Optimal Discriminant Function. IEEE Trans. on Neural Networks 1(11), 296–298 (1990)

    Article  Google Scholar 

  8. Jarabo-Amores, P., et al.: Sufficient Condition for an Adaptive System to Aproximate the Neyman-Pearson Detector. In: Proc. IEEE Workshop on Statistical Signal Processing, pp. 295–300 (2005)

    Google Scholar 

  9. Gandhi, P.P., Ramamurti, V.: Neural Networks for Signal Detection in Non-Gaussian Noise. IEEE Trans. on Signal Processing 45(11), 2846–2851 (1997)

    Article  Google Scholar 

  10. Andina, D., Sanz-Gonzalez, J.L.: Comparison of a Neural Network Detector Vs Neyman-Pearson Optimal Detector. In: Proc. of ICASSP-96, pp. 3573–3576 (1996)

    Google Scholar 

  11. Haykin, S.: Neural Networks. In: A Comprehensive Foundation, 2nd edn., Prentice-Hall, London (1999)

    Google Scholar 

  12. Bishop, C.M.: Neural networks for pattern recognition. Oxford University Press Inc., New York (1995)

    Google Scholar 

  13. Hagan, M.T., Menhaj, M.B.: Training Feedforward Networks with Marquardt Algorithm. IEEE Trans. on Neural Networks 5(6), 989–993 (1994)

    Article  Google Scholar 

  14. Nguyen, D., Widrow, B.: Improving the Learning Speed of 2-layer Neural Networks by Choosing Initial Values of the Adaptive Weights. In: Proc. of the Int. Joint Conf. on Neural Networks, pp. 21–26 (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Francisco Sandoval Alberto Prieto Joan Cabestany Manuel Graña

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vicen-Bueno, R., Jarabo-Amores, M.P., Mata-Moya, D., Rosa-Zurera, M., Gil-Pita, R. (2007). Low Complexity MLP-Based Radar Detector: Influence of the Training Algorithm and the MLP Size. In: Sandoval, F., Prieto, A., Cabestany, J., Graña, M. (eds) Computational and Ambient Intelligence. IWANN 2007. Lecture Notes in Computer Science, vol 4507. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73007-1_76

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73007-1_76

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73006-4

  • Online ISBN: 978-3-540-73007-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics