Skip to main content

Grid Environment for Fabricating Custom Artificial Human Bone

  • Conference paper
Technologies for E-Learning and Digital Entertainment (Edutainment 2007)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4469))

  • 2973 Accesses

Abstract

Computer assisted instruction in biomedical engineering (BME) education has been explored and changed dramatically in decades. In this paper we presents a new educational Grid Environment for BME courses. It is designed to be suitable for supporting for the education of medical instrumentation. In emergent situation it helps students to manipulate Rapid Prototyping Machine to fabricate custom artificial human. A rapid prototyping process chain (RPPC), which combines time limits, cost of CT scans, parallelism in computer simulations and bone fabrication, was integrated as workflow in grid service. The grid involves a synthesis of coordinated examinations and large scale, parallel artificial human bones simulations. The portal at students sides need only a thin client and can be accessed by a standard web browser. To illustrate the application of our approach in the grid environment, a femur fabrication case is presented to show its fast and reliable results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blanchard, M.S., Dewolf, D.K., Dillon, A.E.: Biomedical engineering applications-A prototype World WideWeb Textbook. In: Proc. 19th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., October 30-November 2, pp. 922–923. IEEE Computer Society Press, USA (1977)

    Google Scholar 

  2. Tsai, M.C., Dev, P., Leifer, L., Melmon, K.L.: Web based information support for biomedical device design and education. In: Int. Conf. IEEE Eng.Med. Biol. Soc., vol. 20(3), pp. 1192–1193. IEEE Computer Society Press, Los Alamitos (1998)

    Google Scholar 

  3. Ryan, M., Mulholland, C.W., Gilmore, W.S.: Application of computer-aided learning in biomedical sciences: Considerations in design and evaluation. Br. J. Biomed. Sci. 57, 28–34 (2000)

    Google Scholar 

  4. Istanbullu, A., Güler, I.: Computer assisted learning for biomedical engineering education: Tools. In: Proc. 23rd Annu. Int. Conf. IEEE Eng.Med. Biol. Soc., Turkey, Istanbul, vol. 23, pp. 4030–4031 (2001)

    Google Scholar 

  5. Dee, K.C., Nauman, E.A., Livesay, G.A., Rice, J.: Research Report: Learning Styles of Biomedical Engineering Students. Annals of Biomedical Engineering 30(8), 1100–1106 (2002)

    Article  Google Scholar 

  6. Istanbullu, A., Güler, I.: Multimedia Based Medical Instrumentation Course in Biomedical Engineering. Journal of Medical Systems 28(5), 447–454 (2004)

    Article  Google Scholar 

  7. Foster, I., Kesselman, C., Nick, J., Tuecke, S.: The physiology of the Grid: An Open Grid Services Architecture for Distributed Systems Integration, Open Grid Service Infrastructure WG, Global Grid Forum (June 2002)

    Google Scholar 

  8. Baker, M., Buyya, R.: Grids and Grid technologies for wide-area distributed computing, Software Practice and Experience. John Wiley & Sons, Chichester (2002)

    Google Scholar 

  9. Foster, I., Kesselman, I C.: The Grid: Blueprint for a Future Computing Infrastructure. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  10. Commodity Grid Kits: http://www.globus.org/cog/ (2003)

  11. Laszewski, G., Foster, I., Gawor, J., Lane, P.: A Java Commodity Grid Toolkit, Concurrency: Practice and Experience 13(8-9), pp. 643–662 (2001)

    Google Scholar 

  12. http://www.dassault.fr

  13. http://www.ansys.com

  14. Java Native Interface: http://www.sun.com/docs/books/tutorial/native1.1/ (2004)

  15. Taylor, I., et al.: Grid Enabling Applications Using Triana. In: Workshop on Grid Applications and Programming Tools, Seattle (June 25, 2003)

    Google Scholar 

  16. http://www.unicore.org

  17. Deelman, E., et al.: Mapping Abstract Complex Workflows onto Grid Environments. Journal of Grid Computing 1(1), 25–39 (2003)

    Article  Google Scholar 

  18. Allcock, W., Bester, J., Bresnahan, J., Chervenak, A., Liming, L., Meder, S., Tuecke, S.: Gridftp protocol specification, Technical report, Global Grid Forum (September 2002)

    Google Scholar 

  19. Condor DAGman, http://www.cs.wisc.edu/condor/dagman/

  20. Kolta, S., Le Bras, A., Mitton, D., Bousson, V., de Guise, J.A., Fechtenbaum, J., Laredo, J.D., Roux, C., Skalli, W.: Three-dimensional X-ray absorptiometry (3D-XA): a method for reconstruction of human bones using a dual X-ray absorptiometry device. Osteoporos Int 16, 969–976 (2005)

    Article  Google Scholar 

  21. Büchler, P., Farron, A.: Benefits of an Anatomical Reconstruction of the Humeral Head During Shoulder Arthroplasty: A Finite Element Analysis. Clinical Biomechanics 19(1), 16–23 (2004)

    Article  Google Scholar 

  22. Gan, R.Z., Feng, B., Sun, Q.: Three-Dimensional Finite Element Modeling of Human Ear for Sound Transmission. Annals of Biomedical Engineering 32(6), 847–859 (2004)

    Article  Google Scholar 

  23. Pham, D.Y., Gault, R.S.: A comparison of rapid prototyping technologies. International Journal of Machine Tool & Manufacture 38, 1257–1287 (1998)

    Article  Google Scholar 

  24. Au, S., Wright, P.K.: A comparative study of rapid prototyping technology. In: Proceedings ASME Winter Conference, New Orleans, vol. 66, pp. 73–82 (November 1993)

    Google Scholar 

  25. Stratasys Inc. FDM-1650, Stratasys Inc., 14950 Martin Drive, Eden Prairie, Minneapolis 55344-2020, USA (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Kin-chuen Hui Zhigeng Pan Ronald Chi-kit Chung Charlie C. L. Wang Xiaogang Jin Stefan Göbel Eric C.-L. Li

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Li, Y., Xu, X. (2007). Grid Environment for Fabricating Custom Artificial Human Bone. In: Hui, Kc., et al. Technologies for E-Learning and Digital Entertainment. Edutainment 2007. Lecture Notes in Computer Science, vol 4469. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73011-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73011-8_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73010-1

  • Online ISBN: 978-3-540-73011-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics