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Abstract. This paper investigates two integer linear programming models that 
integrate requirement scheduling into software release planning. The first model 
can schedule the development of the requirements for the new release exactly in 
time so that the project span is minimized and the resource and precedence con-
straints are satisfied. The second model is for combined requirement selection 
and scheduling, which can not only maximize revenues but also calculates an 
on-time-delivery project schedule simultaneously. Two simulations are pre-
sented to examine the influence of precedence constraints and compare the dif-
ferences of the traditional prioritization models and the two new ones. The 
simulation results suggest that requirement dependency can significantly influ-
ence the project plan and the combined model for requirement selection and 
scheduling is better in the sense of efficiency and on-time delivery.  

Keywords: Requirement Selection, Requirement Scheduling, Release Planning, 
Integer Linear Programming (ILP), Simulation.  

1   Introduction 

Determining requirements for the upcoming release is a complex process [24]. With the 
evident pressure on time-to-market [22, 27] and limited available resources, usually 
there are more requirements than can be actually implemented. The market-driven 
requirement engineering processes [6] have a strong focus on requirement prioritiza-
tion [18]. The requirement list needs to fulfill the interests of various stakeholders and 
takes many variables into consideration. Several scholars have presented lists of such 
variables, including: importance or business value, stakeholder preference, cost of 
development, requirement quality, development risk and requirement dependencies  
[8, 13, 14, and 27].  

In order to deal with this multi-aspect optimization problem, several techniques have 
been applied. The analytical hierarchy process (AHP) [18, 22] assesses requirements by 
examining all possible requirement pairs and matrix calculations to determine a 
weighted list. Jung [17] extended the work of Karlsson and Ryan [18] by using integer 
linear programming (ILP) to reduce the complexity of AHP to large amounts of re-
quirements. Carlshamre [8] used ILP too on which a release planning tool was built and 
added requirement dependencies as an important aspect in release planning. Ruhe and 
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Saliu [25] describe a method based on ILP to include stakeholder’s opinions for release 
planning. Van den Akker et al [2] further extended the ILP technique by including 
some management steering mechanisms and ran a few simulations to test the influences 
of each mechanism. Besides ILP techniques, the cumulative voting method [19] allows 
different stakeholders to assign a fixed amount of units among all requirements, and an 
average weighted requirement list is constructed; Ruhe and Saliu [25] provide a method 
called EVOLVE to allocate requirements to incremental releases. Berander and  
Andrews [4], provide an extensive list of requirement prioritization techniques.  

The schedule of the requirements development is also suggested as an important 
issue in this field [13]. Unfortunately, few prioritization methods have taken this into 
account. Scheduling requirements is considered as a next step after requirement selec-
tion [8] and the selection and scheduling processes are often used iteratively to find a 
group of requirements with an on-time delivery project plan [24]. Compared to the 
extensive research on requirement selection, only few researches have been performed 
for the scheduling part. Given the fact that 80% of software projects are late or over 
budgeted [10], a precise project plan which synchronizes the development team is 
needed. A traditional way of project planning would be to compute the critical path on 
the bases of the precedence dependencies, commonly depicted in Gantt chart. How-
ever, then we do not guarantee that the team capacities or skills are respected. Different 
types of dependencies [7], which describe the relationships between requirements, also 
increase the complexity of making a project plan.  

1.1   Example of Release Planning Problem  

Table 1 depicts a simplified example representation of the release planning problem. 
For nine requirements with estimated revenue (in euro) and cost (in man days), the 
available resources in different teams (or skills) within the given period, and the  
 

Table 1. Example requirements sheets of a release planning problem 

Release Definition 5.1 

Nr. Requirement Dependency Revenue
Total

man days
Team 

A
Team 

B
Team 

C

12 Authorization on order cancellation and removal Imp 63, 25 24 50 5 45

34 Authorization on archiving service orders 12 12 2 5 5

63 Performance improvements order processing 20 15 15

25 Inclusion graphical plan board Com 66 100 70 10 10 50

43 Link with Acrobat reader for PDF files Imp 25 10 33 33

75
Optimizing interface with international Postal code 
system 

Imp 25 10 15 15

35 Adaptations in rental and systems 35 40 20 20

66 Symbol import 5 10 10

67 Comparison of services per department 10 34 9 25

Total 226 279 42 77 160

Available resources (number of developers) 3 1 1 1

Available team capacity for release 180 60 60 60

Release duration 60 days 
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interdependencies between the requirements, the best set of requirements for a next 
release needs to be determined. Here we use the six types of dependencies suggested by 
Carlshamre [7]. These are given by: 1) Combination: two requirements are to be im-
plemented jointly; 2) Implication: one requirement requires another one to function; 3) 
Exclusion: two requirements are conflicting to each other. 4) Revenue-based and 5) 
Cost-based dependency means one requirement influences the revenue / cost of an-
other. 6) Time-related dependency means one requirement needs to be implemented 
after another. 

Such a type of release planning problem has been modeled as a multi-dimensional 
knapsack problem [2, 8, 17, and 25]. Using ILP technique, five requirements are se-
lected (marked in grey) so that the total revenue is maximized against the available 
resources. It is also possible to include requirement dependency and some management 
steering mechanisms, like hiring external personnel, deadline extension, etc in the 
model, we refer to van den Akker et al [2] for detail. To solve the ILP problem, we refer 
to Wolsey [28] for a thorough presentation.  

The next step is to schedule the selected requirement exactly in time. Here we have 
to deal with dependencies that result in restrictions on time. For example, requirements 
pertaining to foundational components often need to be implemented before others. 
Similarly, certain capabilities (for example quality issues like safety and security) need 
to be architected and built into the system rather than added on later during develop-
ment. Therefore, an optimal implementation order of the requirements is desired. In the 
next section, we will illustrate how precedence constraint can influence the project 
plan, the release date, as well as the requirement selection.   

1.2   Problem Illustration  

Here we first formally define precedence constraint. If requirement 
*j

R  can only start 
after requirement 

j
R  is completely finished, then there is a precedence constraint 

between 
j

R and
*j

R , denoted as *j jR Rp . Usually, precedence constraints result from 
dependencies. It is clear that the precedence constraint can influence the development 
sequence of the requirements. However, the question is: as we have already selected the 
requirements based on the available capacity, will the precedence constraint also in-
fluence the project deadline of the release? 

When there are precedence constraints and different development teams, scheduling 
requirements becomes a complex problem. Figure 1, provides an example of a 
time-schedule for the release planning problem in Table 1.  

 

Fig. 1. A numerical example of requirement scheduling problem 
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From Figure 1, it is clear that although the requirement selection does not exceed the 
teams’ capacities, the project is delayed. The reason is that there is an implication de-
pendency and hence a precedence constraints between requirement 25 and 43. Although 
team B finishes its task for R25 at day 10, it can not start to develop R43, which is de-
pendent on R25’s completion, because R25 is only available at day 50 when team C 
finishes its job. So, between day 10 and day 50, team B only needs five days for R34 and 
the rest 35 days are wasted on waiting team C. When R25 is finally available at day 50, it 
takes team B another 33 days to develop R43, so the earliest date to finish the whole 
project is at day 83 instead of the expected day 60. Obviously, the time wasted on 
synchronization is not preferred. This raises an important issue how to design a schedule 
which makes teams utilizing available time efficiently without waiting for others? Or in 
case this problem can not be eliminated, how to minimize such waiting time and 
minimize the total release project span as well?  (Results are shown later in chapter 6). 

Another issue is: if we need to spend too much time on waiting for others, is that 
possible to re-select requirements so that the release plan fits a predetermined deadline? 
For example, in the former case, if we still want to keep the 60 days as the deadline, 
then we need to re-select the requirements so that the newly selected requirements can 
be implemented within the time span. For this case, R43 has to be dropped to keep the 
project on time.  

In this paper, we will focus on solving the two problems mentioned above: under the 
circumstances that there are both different development teams (or special skills) and 
precedence constraints: 

1. How should we schedule the requirements to minimize the project lead time, i.e. 
the finishing time of the project? 

2. How should we integrate the requirement selection and scheduling together so that 
the revenue is maximized and the project plan is on schedule?  

The focus of this paper is to provide mathematical models which can assist managers 
to determine the requirement selection and scheduling for the coming release. Like any 
planning, a careful estimation of the factors is the key to success. We are also fully 
aware that in real world, many psychological, political and personality factors can in-
fluence the right choices. It can not be purely mathematical, but mathematical models 
can be considered as a useful means of decision support.   

The remaining of the paper is organized as follow. In Section 2, we first present the 
relationship between precedence constraint and the requirement dependencies. Sec-
tions 3 and 4 provide ILP models for requirement scheduling and a combined method 
for requirement selection and scheduling. We discuss the prototypes we developed in 
Section 5. In Section 6, two simulations are presented to examine the influences of 
precedence constraint on requirement scheduling and the differences between the 
models. We conclude the paper and provide future research directions in Section 7.   

2   A First Analysis 

2.1   Precedence Constraint and Requirement Dependency  

Carlshamre et, al [7] identified six types of requirement interdependencies (listed in 
Table 2) for the release planning, and the first five are suggested and modeled as  
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important factors for requirement selection [2, 8]. With respect to time, some of the 
dependencies can not only influence the requirement selection, but will also influence 
the requirement scheduling. For example, if requirement 

*j
R  requires 

j
R  to function, 

it is normally better to start develop
*j

R  after 
j

R  is finished; or if requirement jR  in-
fluences the implementation cost of requirement

*j
R , it is also considered better to 

implement jR first [8]. So, together with the explicitly mentioned time-related  
dependency, also the implication and cost-related dependencies provide precedence 
constraints. Hence, when scheduling the requirements, we should take three out of the 
six types of requirement dependencies into consideration. Table 2 depicts the influence 
of dependencies on requirement selection and scheduling. 

Table 2. The influences of dependencies on requirement selection and scheduling 

Dependency 
group 

Dependency 
type 

Influence 
requirement 

selection 

Influence 
requirement 
scheduling 

Combination    
Implication     

Functional 
dependency 

Exclusion    
Revenue-based    Value-related 

dependency Cost-based     
Time-related 
dependency 

Time-related    

2.2   Scheduling Without Precedence Constraint 

In Figure 1, we have illustrated the scheduling problem when there are precedence 
constraints and team divisions. However, scheduling will not be a problem if there are 
no precedence constraints between requirements. As each team works independently, 
and no synchronization is needed, they just need to randomly give a permutation of all 
the development tasks of the team, and perform them one after another. In this way, 
scheduling is not a problem and the deadline will not be exceeded.   

2.3   Scheduling Without Team Division 

In case there are precedence constraints but no team or task division, scheduling the 
activities is also not a difficult issue. We can first create a Directed Acyclic Graph 
(DAG) by setting the requirements 

j
R  as vertexes and the precedence constraint 

*j j
R Rp  as a directed edge

*
( , )

j j
R R . Then any topological sort [9] of the directed 

acyclic graph results in a feasible schedule. This sort provides a linear order of all the 
vertices such that if G  contains an edge *( , )j jR R , then 

j
R  appears before

*j
R . We can 

compute this sort in ( )O N E+  time where N equals the number of requirements and 
E  equals the number of dependencies. Because the development works continuously 
without interruption, the release deadline can also be kept. 
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3   An ILP Model for Requirement Scheduling  

To schedule the requirements exactly in time, there are two issues to consider: the 
limited resources available and the existence of precedence constraints between the 
requirements. Within scheduling theory, the problem can be characterized as a special 
case of the Resource Constraint Project Scheduling Problem (RCPSP) [21]. It is special 
because the resources all have capacity 1. RCPSP is an NP-Hard problem [5]. The 
problem complexity inspired many scholars to develop heuristics method [3] or exact 
algorithms [11]. Here, we present an ILP model of the RCPSP formulation of our 
problem.   

3.1   Problem Formulation 

We are given a set of n  requirements{ }1 2 nR R RL .  Let m  be the number of 
teams iG  ( 1, 2, )i m= K . The development activity in team 

i
G  for requirement 

j
R  is 

considered as one individual job—each team works independently on one requirement 
and there is no predefined time restriction for the jobs within a requirement. Let us 
define a set 1 2( , , , )kX J J J= K of all the jobs with positive development time and there 
are k  ( k m n≤ × ) jobs in the set.  

Because each job belongs to only one requirement, using this attribute, we can par-
tition the set X  into n  disjoint subsets { }1 2( ) ( ) ( )nX R X R X RL  where 

( )jX R = { kJ | job kJ  is for requirement 
j

R }, ( 1, 2, )j n= K . Similarly, one job only 
belongs to one team, so we can partition the set X  into m  disjoint subsets 
{ }1 2( ) ( ) ( )nX G X G X GL  where ( )iX G = { kJ | job kJ  is in team 

i
G } ( 1, 2, )i m= K .  

Each job ( ) ( )k j iJ X R X G∈ I  is associated with a parameter ija  as the amount of 
man days needed for Requirement 

j
R  in team

i
G . Assume the number of developers in 

team iG  is
i

Q ; we can compute the development time 
k

d  for job kJ  is ij ia Q  . Here 
we assume that as soon as a team starts working on a job, they will continue work on it 
until the job is complete finished. 

The Precedence Constraints 
We can define a set { }* *

( , )
j j j j

A R R R R= p  which contains all the precedence con-
straints. We define the set H  to show the precedence relationship between jobs: 

{ }* * * *( , ) ( ) , ( ), ( , )k k k j k j j jH J J J X R J X R R R A= ∈ ∈ ∈  
In this way, we set all the jobs of requirement

*j
R  as the successors of the jobs of 

requirement
j

R  and we can make sure that any job for requirement
*j

R  can only start 
after all the jobs for requirement

j
R  are finished.  

We also need to introduce two virtual jobs, the start of the project and the end of the 
project. The job START must start before starting the jobs in X , the job END can only 
start when all the jobs X are finished. The processing time of these two virtual jobs is 0, 
and the new job set with the two additional virtual jobs is X ′ .  

If job kJ  does not have any successor, then we add ( , )kJ END to H . Or if job kJ  
does not have any predecessor then we put ( , )kSTART J  in H  . 

The precedent relationships between jobs can be represented by a directed acyclic 
graph ( , )G X H′= .   
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The Upper Bound of the Project Span 
Let 

max
T be the upper bound of the project span. We can set the upper bound as 

1

max( ( ))
n

k k j
j

Jd X R
=

∈∑ . The upper bound corresponds to developing requirements 
one after another, i.e. without any time overlap between different requirements.  

The Earliest Start 
k

es and the Latest Start 
k

ls  of each Job kJ  

For each job kJ , we can compute 
k

es (earliest possible start) and 
k

ls (latest possible 
start) as its time window to start. To compute the time interval, we first topologically 
sort the jobs, so that job kJ  is before job *kJ  in the order if *( , )k kJ J H∈ .   

We can use a longest path algorithm (forward recursion) to compute 
k

es . First, set 

0
START

es = , then we go through the jobs from START to END and set 

( )
( , )

max
k j j

j k H

es es d
∈

= + . Similarly, we can compute the latest start 
k

ls  using a longest 
path algorithm (backward recursion). First, set 

maxEND
ls T=  then we go through the jobs 

from END to START and set ( )
( , )
min

j k j
j k H

ls ls d
∈

= − .  

The (0,1) Integer Linear Programming Model 
For the integer linear programming model we use a time-indexed formulation. This 
formulation has successfully been applied for machine-scheduling problems and is 
known to have a strong LP-relaxation lower bound (see e.g. [1] and [12]). We discretize 
time and the integer time t  represents the period of [ ), 1t t + . For each job kJ  we de-
fine a group of variable

kt
ξ within the time interval[ ],

k k
es ls , where t  is the possible 

time for kJ  to start. Now 
kt

ξ is a binary variable which equals 1 if and only if kJ  starts 
at the beginning of period t . Then we can formulate the problem as follow: 

  min
END

END

t ls

ENDt

t es

t ξ
=

=

⋅∑           (3.1) 

Subject to: 

1
k

k

t ls

kt

t es

ξ
=

=

=∑  ,   for all kJ X ′∈       (3.2) 

*

*

*

k k

k k

t ls t ls

kt k k t

t es t es

t d tξ ξ
= =

= =

⋅ + ≤ ⋅∑ ∑    for all *( , )k kJ J H∈      (3.3) 

( ) ( , )

1
k i

t

k
J X G t k

τ
τ σ

ξ
∈ =

≤∑ ∑   for ( )
max

0,1,t T= K , 1, ,i m= K     (3.4) 

{ }0,1ktξ ∈    for all [ ],k kt es ls∈  , kJ X ′∈     (3.5) 

where in constraint (3.4), ( , ) max(0, 1)
k

t k t dσ = − + . Constraint (3.1) shows the ob-

jective that we want to minimize the project span. Constraint (3.2) shows a job is started 
exactly once. Constraint (3.3) is the precedence constraint—one requirement can only 
start after its predecessor is finished. Constraint (3.4) means a development team can 
only develop at most one job at one time.  
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4   A Combined Model for Requirement Selection and Scheduling 

As we have seen, there is a risk that the selected set of requirements can not be sched-
uled in time. In most of the software development process models, the selection and 
scheduling are performed iteratively until a good solution is found [24]. However, 
doing it iteratively is not only difficult but also time-consuming because we need to 
constantly repeat the following 3 steps:  

1. Drop some requirements so that the project plan is fit. 
2. Re-fill in some requirements to take up the freed capacity.  
3. Re-make project plan for the new group of requirements.  

Because of the complexities of the knapsack model and the RCPSP model (they are 
both NP-Hard), without a proper search algorithm, it is very difficult to find a solution 
that can fulfill the goals of maximizing revenue and on time delivery. Even if such 
searching method is found, constantly calling these two NP-hard models will be very 
time consuming. A better method is demanded to solve this problem.  

In this section, we will present a new ILP model which enables us to achieve the 
goals of maximizing revenue and on time delivery simultaneously. In the following 
section, we will present a model for combined selection and scheduling of the re-
quirements when a fixed project deadline is given. 

4.1   Formulating the ILP Model  

We define the requirements jR , the teams iG , the jobs kJ and the dependency set A  as 
the in Section 3.1. In addition, each requirement 

j
R  is associated with an expected 

revenue 
j

v . And we denote our planning period by T  and define ( )d T  as the number 
of working days in the planning period. 

The Precedence Constraints 
We can handle the precedence constraints similarly to Section 3.1, only that we do not 
need to introduce the two virtual jobs: START & END and do not need to link them to 
the jobs in X . This is because which requirements will be in the schedule is still un-
certain and the release date is already fixed.  

The Earliest Start 
k

es and the Latest Start 
k

ls  of each Job kJ  

For the earliest start 
k

es , we can also use the longest path algorithm from Section 3.1. 
The only difference is since we do not have the virtual job START any more, we need to 
set the earliest start 0

k
es =  for all the jobs which do not have predecessor. We can 

apply this lower bound because a requirement can only be selected and developed when 
all its predecessors are selected and developed.   

For the latest start 
k

ls , it equals ( )
k

d T d− . Please note that the method to compute 

k
ls  is significantly different from the scheduling model. We can not lower this upper 
bound because we do not know whether the successors of a job will be selected.   

It is possible that k kls es<  for a certain job kJ . It then means the job can not fit in 
the project time span. So the requirement 

j
R  which contains this job will also not be a 
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candidate of the next release. Hence, we can eliminate these requirements beforehand 
and define a set X ′′  which contains only the feasible ones.  

The (0,1) Integer Linear Programming Model 
Like in [2], for each requirement jR , we define a binary decision variable

j
x associated 

to it, where 1
j

x = if and only if requirement
j

R is selected. Moreover, for each job 

kJ X ′′∈ , we define a group of binary decision variable 
kt

ξ  within its possible time 
interval [ , ]

k k
t es ls∈ , where 1

kt
ξ =  if and only if job kJ  starts at time t .  

We can now model the combined selection and scheduling problem as follows: 

   
1

max
n

j j
j

v x
=
∑                        (4.1) 

Subject to  

k

k

t ls

kt j
t es

xξ
=

=
=∑      for all ( )k jJ X R∈ , 1, ,j n= K     (4.2) 

*j jx x≤     for all *( , )j jR R A∈      (4.3) 

*

*

* *(1 ) ( )
k k

k k

t ls t ls

kt k k t j
t es t es

t d t x d Tξ ξ
= =

= =
⋅ + ≤ ⋅ + − ⋅∑ ∑   

       for all *( , )k kJ J H∈ , *( )k jJ X R′ ∈     (4.4) 

( ) ( , )

1
i

t

k
k X G t k

τ
τ σ

ξ
∈ =

≤∑ ∑    for  ( )max0,1,t T= K , 1, ,i m= K     (4.5) 

{ }, 0,1kt jxξ ∈     for all [ ],k kt es ls∈ , kJ X ′′∈ ,  

                1, ,j n= K                             (4.6) 

where in constraint 3.5, ( , ) max(0, 1)
k

t k t dσ = − + . The objective function (4.1) 

shows that we want to maximize the revenue. Constraint (4.2) means that a requirement 
is selected if and only if all its jobs are planned. Constraints (4.3) and (4.4) deal with the 
precedence constraints.  Constraint (4.3) means a requirement is only selected when its 
predecessor is selected. Constraint (4.4) means the jobs for the successor requirement 
can only start after all the jobs for its precedent requirements are finished. Please note, 
that this constraint is different with the precedence constraint modeled in section 3.1, 
because the successor job is not guaranteed to be selected. (4.5) is the resource con-
straint that one team is only able to develop one requirement at a time. Constraint (4.6) 
is the binary constraint for all the variables.  

Note that if we ignore the precedence constraints (4.3) and (4.4), it is another way to 
represent the multi-dimensional Knapsack problem.  

4.2   Extensions of the Model  

Using the combined model, it is possible to model all the six types of requirement 
dependency listed in Table 2. Combination, implication, exclusion and revenue-based 
can be modeled the same way as in the knapsack model. Only the cost-based  
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dependency is modeled differently. It is also possible to model the conditions when 
team 

i
G  is only available for a certain time interval instead of the whole period, or 

there are holiday seasons within the period. For reasons of brevity, we refer to [20] for 
details. 

5   Prototype 

We have implemented three Java prototypes for requirement selection & scheduling 
based on the models available so far—the knapsack model, the scheduling model, and 
the combined model. These prototypes run in Linux environment and make use of the 
callable library of ILOG CPLEX [16] for solving the ILP problem. CPLEX is one of the 
best known packages for integer linear programming.   

 

Fig. 2. Screen shot of the scheduling prototypes 

Figure 2 shows a screenshot of the prototype for the combined model. The re-
quirements are managed and stored in the database with estimated revenue, cost and 
dependency. This screenshot shows the interface of the model for combined require-
ment selection and scheduling. Based on the data attributes of the requirements and the 
expected release date, the requirements selection and a project plan for the next release 
are calculated simultaneously.  

6   Simulation Tests 

In Section 1.3 we have shown that when there are different development teams and 
precedence constraints, the problem of synchronization can possibly delay the whole  
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project. However, the size of this influence is still unknown. In addition, although the 
combined model for requirement selection and scheduling can guarantee on time de-
livery, the additional constraints will possibly cause a loss of revenue. The trade off 
between the time saving and the additional cost is also not clear. These concerns lead us 
to investigate the following questions through simulation tests:  

Simulation 1: What is the relationship between the number of time-related de-
pendencies and the possibility of running out of time in the project planning?  

Simulation 2: What are the differences when we select and schedule requirements 
at the same time, and when we select and schedule sequentially? 

For testing the programs and comparing the models, two types of datasets were used 
(available online [15] for research purpose). They were:  

 Small: 9 requirements and 3 teams, release duration 60 days.  
 Master: 99 requirements and 17 teams, release duration 30 days.  

The Small dataset was the example dataset provide in Table 1. The Master dataset was 
generated from larger real life datasets originated from a large software vender. All 
team values were kept the same, but the team capacities and revenues were modified 
for confidentiality reasons.  

In order to make the model not case specific, we randomly generated dependencies. 
We guaranteed that no cycle occurs within the dependencies. This is important because 
the requirements in the cycle would be inter-waiting others’ completion and cause a 
deadlock. For the small dataset, we examine the situation with 1, 2, 3 and 4 depend-
encies, while for the master dataset, we check the situation with 0.5%, 1%, 2%, and 5% 
of the maximal number of possible dependencies (every two requirements are inter-
dependent. This equals 2 ( 1) / 2

n
C n n= ⋅ − ). Note that here we mentioned the number of 

dependencies we explicitly generated. There may also be some additional dependencies 
induced by the generated dependencies, e.g. if Ri has to precede Ri and Rj has to precede 
Rk , then also Ri has to precede Rk. For every number of dependencies, we randomly 
generate 100 groups of dependencies and run 100 times. 

6.1   Results of the Simulation 1: The Influence of Dependencies on Project Plan  

In this simulation, we want to exam how much precedence constraint can influence the 
project span. Given the small and master dataset, we first select requirement using the 
knapsack model, then we randomly generate a certain amount of dependencies and 
call the scheduling model to make a project plan. We then find the maximal, minimal 
and average make-span, i.e. duration of the project and count how many times the 
project is delayed within the 100 runs. At last, we compare the results with the lower 
bound. The lower bound is the maximum value of the project make-span without 
precedence constraints and the result of longest path algorithm, which relaxed the 
constraint on team difference (i.e. ENDes in Section 3.1). Table 3 shows the results of 
the 100 runs each row.   
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Table 3. Schedule results of the first simulation 

The project span 
The difference between 

lower bound 
Data Set 

Dep
ratio

No.
Dep Max 

days 
Min 
days 

Average
days 

Times of 
delay 

Max diff
Min 
diff

Average
diff

10% 1 83 55 58.80 16 0.00% 0.00% 0.00% 
20% 2 93 55 63.70 40 27.27% 0.00% 0.93% 
30% 3 103 55 70.42 62 27.27% 0.00% 2.64% 

Small-result 
(5 Reqs,  60 

days) 
40% 4 108 55 75.32 76 14.55% 0.00% 2.12% 

0.5% 14 40 30 30.93 33 30.00% 0.00% 2.70% 
1% 29 46 30 31.38 27 8.57% 0.00% 0.22% 
2% 57 69 30 36.92 76 22.58% 0.00% 2.13% 

Master-result
(76 Reqs, 30 

days) 
5% 142 84 38 56.15 100 19.23% 0.00% 3.47%  

To visualize the results, we plot the result of master data set in the following chart. 
The result of small dataset keeps the same trend as the master one.  

 

Fig. 3. Schedule results based on the master dataset 

In figure 3, the left chart shows the dependency’s influence on project span and the 
right chats shows the ratio of the delayed cases and on-time cases. Although the re-
quirements selected using knapsack model are expected to finish within 30 days, the 
results vary a lot. When there are 0.5% or 1% of possible dependencies, the results of 
the 100 runs range within a few days, the average project span is close to the release 
date and the number of over-time cases is still low. The result starts to explode after 2%. 
Then the project span varies a lot based on different dependencies and is on average 
much higher than expected. Especially when there are 5% of possible dependencies, the 
minimal case requires 38 days which means none of the 100 run are on time.  

It is not difficult to conclude that precedence constraints play an important role for 
release scheduling. When there are just a few dependencies, they can already greatly 
influence the project span. And as the number of dependencies grows, the project span 
also grows significantly. Based on the complexity of the system, the exact number of 
dependencies may vary a lot, but a former survey [8] has suggested that there are at 
least 80% of requirements are interdependent and most of them are implications and 
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cost-based, then we can assume that the exact number of dependency is at least higher 
than the second row of the small and master dataset. 

6.2   Results of the Simulation 2: Model Comparison  

In this simulation, we compare the differences between applying the knapsack and 
scheduling model subsequently (k&s), and the combined model (comb). We take the 
following three steps to compare the models. Step 1, based on the small and the master 
datasets, we randomly generate a group of dependencies. Step 2, we then use the 
knapsack model to select the requirements and record down the dependencies within 
the selected requirements, and we call the scheduling model to schedule the activities 
exactly in time. Step 3, for the same dataset and dependencies we call the combined 
model to select and schedule the requirement at the same time. Step 4, we compare the 
revenue difference between the knapsack model and the combined model; the time 
difference between the scheduling model and release date (which is the schedule result 
of the combined model) and the times of delay. 

 When analyzing the results, we found that when the combined model and the 
knapsack model select the same requirements, the scheduling model can always find a 
timely schedule. The result is not surprising but also of no interest since everything is 
the same. So we decided to also make a statistics only for the delayed cases. The 
computational results are shown in Table 4. 

Table 4. Simulation results of model comparison 

Statistics for the 100 runs Statistics only for the delayed cases 

Data
Set

Dep
ratio

No.
of

Dep
Average
revenue 
(comb) 

Average
revenue 
(k&s) 

Average
project 
span
(k&s)

Average
project 
span

No. of
delay
(k&s)

Average
revenue 
(comb) 

Average
revenue 
(k&s)

Average
time  

(k&s) 

Average
revenue 

diff diff

3% 1 139.17 141.27 56.62 9 123.67 147 73 15.87% 21.67% 
10% 3 128.06 132.53 58.15 17 110.53 136.82 76 19.15% 26.67% 
15% 5 114.81 121.45 59.25 22 99.27 129.45 76.59 22.92% 27.65% 

Small 
(9 Reqs
60 days)

20% 7 105.59 110.87 57.72 24 104.02 126.14 76.07 16.84% 26.78% 
0.5% 24 40420.1 40429.5 30.48 17 40442.1 40493.5 32.82 0.13% 9.41% 
1% 48 39275.5 39479.1 32.62 45 38965.7 39400.9 35.82 1.15% 19.41%
2% 97 35581.6 36103.1 36.41 68 35351.8 36118.7 39.43 2.11% 31.42%

Master
(99 Reqs
30 days)

5% 242 26947.7 29127.3 45.61 95 26804.5 29098.8 46.43 7.84% 54.77%  

The results prove again that precedence constraints play an important role for re-
quirement selection and scheduling. As the number of constraint increase, the average 
revenue of the two models decrease and the average project plan as well as the possi-
bility of delay increase. To compare the models, we plot the computational results of 
master dataset in the Figure 4.  

In Figure 4, the left chart shows the average revenue difference and cost difference 
for the delayed cases and the right chart shows ratio of on-time cases and delayed cases. 
It is clear that the combined model can not only guarantee on time delivery but also gain 
more efficiency. When follow the select and then schedule process, the project stand a 
high change of being delayed and this possibility grows larger and larger as the number  
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Fig. 4. Model comparison result based on master dataset 

of dependencies increases. The simulation result also suggests that it is more efficient 
to take the project plan issues into account when selecting the requirements, because 
even if we ignore the influence on missing the deadline, the revenue loss of the com-
bined model is significantly less than the additional development time. 

7   Conclusion and Future Research  

The contributions of this paper are: first, we applied the RCPSP model to solve the 
release planning problem based on the precedence dependencies between requirements 
and the resources/skills constraints in the company. Second, we presented a new ILP 
model which can combine the requirement selection and scheduling together and pro-
vide a requirement selection and on-time-delivery project plan simultaneously. At last, 
we implemented the models and launched two simulations to demonstrate the appli-
cation of the models. The results indicate that the model for combined requirement 
selection and scheduling can not only keep on-time-delivery but also be more efficient 
than the traditional knapsack model.  

The results looks very promising, but some more works still needs to be done. The 
second simulation results show convincing figures to combine the requirement selec-
tion and scheduling together. More work is needed to evaluate this process improve-
ment opportunity. The first simulation results also suggest that the optimal schedule 
found by integer linear programming is not far away from the critical path lower bound. 
It can be interesting to investigate if there are faster algorithms for scheduling that can 
get rather close to the optimum. The scalability of the models is so far unknown, more 
research is needed to test it and make it applicable for larger dataset. 
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