Skip to main content

Coefficient Structure of Kernel Perceptrons and Support Vector Reduction

  • Conference paper
Bio-inspired Modeling of Cognitive Tasks (IWINAC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4527))

  • 1029 Accesses

Abstract

Support Vector Machines (SVMs) with few support vectors are quite desirable, as they have a fast application to new, unseen patterns. In this work we shall study the coefficient structure of the dual representation of SVMs constructed for nonlinearly separable problems through kernel perceptron training. We shall relate them with the margin of their support vectors (SVs) and also with the number of iterations in which these SVs take part. These considerations will lead to a remove–and–retrain procedure for building SVMs with a small number of SVs where both suitably small and large coefficient SVs will be taken out from the training sample. Besides providing a significant SV reduction, our method’s computational cost is comparable to that of a single SVM training.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennett, K., Bredensteiner, E.: Geometry in learning. In: Gorini, C., Hart, E., Meyer, W., Phillips, T. (eds.) Geometry at Work, Mathematical Association of America, Washington D.C (1997)

    Google Scholar 

  2. Burges, C.J.C.: Simplified support vector decision rules. In: Saitta, L. (ed.) Proc. 13th International Conference on Machine Learning, pp. 71–77. Morgan Kaufmann, San Francisco (1996)

    Google Scholar 

  3. Chang, C., Lin, C.: LIBSVM: a library for support vector machines (2001), http://www.csie.ntu.edu.tw/~cjlin/LIBSVM

  4. Dekel, O., Shalev-Shwartz, S., Singer, Y.: The Forgetron: A Kernel-Based Perceptron on a Fixed Budget. Advances in Neural Processing Systems 18, 259–266 (2005)

    Google Scholar 

  5. Franc, V., Hlavac, V.: An iterative algorithm learning the maximal margin classier. Pattern Recognition 36, 1985–1996 (2003)

    Article  MATH  Google Scholar 

  6. García, D., González, A., Dorronsoro, J.R.: Convex Perceptrons. In: Corchado, E.S., Yin, H., Botti, V., Fyfe, C. (eds.) IDEAL 2006. LNCS, vol. 4224, pp. 578–585. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Joachims, T.: Making Large-Scale Support Vector Machine Learning Practical. In: Schölkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel methods, pp. 169–184. MIT Press, Cambridge (1999)

    Google Scholar 

  8. Lee, Y., Mangasarian, O.L.: RSVM: reduced support vector machines. In: CD Proceedings of the First SIAM International Conference on Data Mining, Chicago (2001)

    Google Scholar 

  9. Keerthi, S., Chapelle, O., de Coste, D.: Building support vector machines with reduced complexity. Journal of Machine Learning Research 7, 1493–1515 (2006)

    Google Scholar 

  10. Parrado-Hernéndez, E., Mora-Jiménez, I., Arenas-García, J., Figueiras-Vidal, A.R., Navia-Vázquez, A.: Growing support vector classifiers with controlled complexity. Pattern Recognition 36, 1479–1488 (2003)

    Article  Google Scholar 

  11. Platt, J.C.: Fast training of support vector machines using sequential minimal optimization. In: Schölkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel methods, pp. 185–208. MIT Press, Cambridge (1999)

    Google Scholar 

  12. Schlesinger, M., Hlavac, V.: Ten Lectures on Statistical and Structural Pattern Recognition. Kluwer Academic Publishers, Dordrecht (2002)

    MATH  Google Scholar 

  13. Schölkopf, B., Smola, A.J.: Learning with Kernels. MIT Press, Cambridge (2001)

    Google Scholar 

  14. UCI-benchmark repository of machine learning data sets. University of California Irvine, http://www.ics.uci.edu

  15. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, Berlin (1995)

    MATH  Google Scholar 

  16. Wu, M., Schölkopf, B., Bakir, G.: A Direct Method for Building Sparse Kernel Learning Algorithms. Journal of Machine Learning Research 7, 603–624 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Mira José R. Álvarez

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

García, D., González, A., Dorronsoro, J.R. (2007). Coefficient Structure of Kernel Perceptrons and Support Vector Reduction. In: Mira, J., Álvarez, J.R. (eds) Bio-inspired Modeling of Cognitive Tasks. IWINAC 2007. Lecture Notes in Computer Science, vol 4527. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73053-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73053-8_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73052-1

  • Online ISBN: 978-3-540-73053-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics