Abstract
We describe a new software tool, called Spieldose (in English, musical box), suited to the automatic music composition task. Our system is based on the paradigm of Interactive Genetic Algorithms (abbreviated as Interactive GA) where the parent selection stage in a typical GA is made by the user according to his/her subjective criteria. The tool permits to integrate the interaction between the system and the potential users when they create their melodies. One important contribution of this work is the proposal of specific musical genetic operators (different types of crossover, mutation and improvement operators) which ensure that the generated melodies are in concordance with Music Theory and they are also nice to listening. Moreover, our software tool can be customized to a particular musical style by including the specific musical knowledge domain in the system. For validation purposes, we used Spieldose to compose different pieces corresponding to the classicism.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
López de Mantaras, R., Arcos, J.L.: AI and Music: From composition to expressive performance. AI Magazine 23(3), 43–57 (2002)
Gartland-Jones, A., Copley, P.: The Suitability of Genetic Algorithms for Musical Composition. Contemporary Music Review 22(3), 43–55 (2003)
Marques, M., Oliveira, V., Vieira, S., Rosa, A.C.: Music composition using genetic evolutionary algorithms. In: Proceedings of the 2000 Congress on Evolutionary Computation, vol. 1, pp. 714–719 (2000)
Gartland-Jones, A.: MusicBlox: A Real-Time Algorithmic Composition System Incorporating a Distributed Interactive Genetic Algorithm. In: Raidl, G.R., Cagnoni, S., Cardalda, J.J.R., Corne, D.W., Gottlieb, J., Guillot, A., Hart, E., Johnson, C.G., Marchiori, E., Meyer, J.-A., Middendorf, M. (eds.) EvoIASP 2003, EvoWorkshops 2003, EvoSTIM 2003, EvoROB/EvoRobot 2003, EvoCOP 2003, EvoBIO 2003, and EvoMUSART 2003. LNCS, vol. 2611, pp. 490–501. Springer, Heidelberg (2003)
Burton, A.R., Vladimirova, T.: Generation of Musical Sequences with Genetic Techniques. Comput. Music J. 23, 59–73 (1999)
Khalifa, Y., Foster, R.: A Two-Stage Autonomous Evolutionary Music Composer. In: Rothlauf, F., Branke, J., Cagnoni, S., Costa, E., Cotta, C., Drechsler, R., Lutton, E., Machado, P., Moore, J.H., Romero, J., Smith, G.D., Squillero, G., Takagi, H. (eds.) EvoWorkshops 2006. LNCS, vol. 3907, pp. 717–721. Springer, Heidelberg (2006)
Göksu, H., Pigg, P., Dixit, V.: Music Composition Using Genetic Algorithms (GA) and Multilayer Perceptrons (MLP). In: Wang, L., Chen, K., Ong, Y.S. (eds.) ICNC 2005. LNCS, vol. 3612, pp. 1242–1250. Springer, Heidelberg (2005)
Henz, M., Lauer, S., Zimmermann, D.: COMPOzE-intention-based music composition through constraint programming. In: Proceedings Eighth IEEE International Conference on Tools with Artificial Intelligence, pp. 118–121 (1996)
Jewell, M.O., Middleton, L., Nixon, M.S., Prügel-Bennett, A., Wong, S.C.: A Distributed Approach to Musical Composition. In: Khosla, R., Howlett, R.J., Jain, L.C. (eds.) KES 2005. LNCS (LNAI), vol. 3683, pp. 642–648. Springer, Heidelberg (2005)
Unehara, M., Onisawa, T.: Music composition system based on subjective evaluation. In: IEEE International Conference on Systems, Man and Cybernetics, vol. 1, pp. 980–986 (2003)
Unehara, M., Onisawa, T.: Construction of Music Composition System with Interactive Genetic Algorithm. In: Proc. of 6th Asian Design Int. Conf. (2003)
Cruz-Alcázar, P.P., Vidal-Ruiz, E.: Learning Regular Grammars to Model Musical Style: Comparing Different Coding Schemes. In: Honavar, V.G., Slutzki, G. (eds.) ICGI 1998. LNCS (LNAI), vol. 1433, pp. 211–222. Springer, Heidelberg (1998)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Sánchez, Á., Pantrigo, J.J., Virseda, J., Pérez, G. (2007). Spieldose: An Interactive Genetic Software for Assisting to Music Composition Tasks. In: Mira, J., Álvarez, J.R. (eds) Bio-inspired Modeling of Cognitive Tasks. IWINAC 2007. Lecture Notes in Computer Science, vol 4527. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73053-8_62
Download citation
DOI: https://doi.org/10.1007/978-3-540-73053-8_62
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73052-1
Online ISBN: 978-3-540-73053-8
eBook Packages: Computer ScienceComputer Science (R0)