Skip to main content

The Underlying Formal Model of Algorithmic Lateral Inhibition in Motion Detection

  • Conference paper
Nature Inspired Problem-Solving Methods in Knowledge Engineering (IWINAC 2007)

Abstract

Many researchers have explored the relationship between recurrent neural networks and finite state machines. Finite state machines constitute the best characterized computational model, whereas artificial neural networks have become a very successful tool for modeling and problem solving. Recently, the neurally-inspired algorithmic lateral inhibition (ALI) method and its application to the motion detection task have been introduced. The article shows how to implement the tasks directly related to ALI in motion detection by means of a formal model described as finite state machines. Automata modeling is the first step towards real-time implementation by FPGAs and programming of ”intelligent” camera processors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fernández-Caballero, A., Mira, J., Fernández, M.A., López, M.T.: Segmentation from motion of non-rigid objects by neuronal lateral interaction. Pattern Recognition Letters 22(14), 1517–1524 (2001)

    Article  MATH  Google Scholar 

  2. Fernández-Caballero, A., Mira, J., Delgado, A.E., Fernández, M.A.: Lateral interaction in accumulative computation: A model for motion detection. Neurocomputing 50C, 341–364 (2003)

    Article  Google Scholar 

  3. Fernández-Caballero, A., Fernández, M.A., Mira, J., Delgado, A.E.: Spatio-temporal shape building from image sequences using lateral interaction in accumulative computation. Pattern Recognition 36(5), 1131–1142 (2003)

    Article  MATH  Google Scholar 

  4. Fernández-Caballero, A., Mira, J., Fernández, M.A., Delgado, A.E.: On motion detection through a multi-layer neural network architecture. Neural Networks 16(2), 205–222 (2003)

    Article  Google Scholar 

  5. Mira, J., Delgado, A.E., Fernández-Caballero, A., Fernández, M.A.: Knowledge modelling for the motion detection task: The lateral inhibition method. Expert Systems with Applications 7(2), 169–185 (2004)

    Article  Google Scholar 

  6. López, M.T., Fernández-Caballero, A., Fernández, M.A., Mira, J., Delgado, A.E.: Visual surveillance by dynamic visual attention method. Pattern Recognition 39(11), 2194–2211 (2006)

    Article  Google Scholar 

  7. López, M.T., Fernández-Caballero, A., Fernández, M.A., Mira, J., Delgado, A.E.: Motion features to enhance scene segmentation in active visual attention. Pattern Recognition Letters 27(5), 469–478 (2006)

    Article  Google Scholar 

  8. Ñeco, R.P., Forcada, M.L.: Asynchronous translations with recurrent neural nets. In: Proceedings of the International Conference on Neural Networks, ICNN’97, vol. 4, pp. 2535–2540 (1997)

    Google Scholar 

  9. McCulloch, W.S., Pitts, W.H.: A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 5, 115–133 (1943)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Automata Studies, Princeton University Press, Princeton (1956)

    Google Scholar 

  11. Minsky, M.L.: Computation: Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs (1967)

    MATH  Google Scholar 

  12. Carrasco, R.C., Oncina, J., Forcada, M.L.: Efficient encoding of finite automata in discrete-time recurrent neural networks. In: Proceedings of the Ninth International Conference on Artificial Neural Networks, ICANN’99, vol. 2, pp. 673–677 (1999)

    Google Scholar 

  13. Forcada, M.L., Carrasco, R.C.: Finite-state computation in analog neural networks: Steps towards biologically plausible models? In: Wermter, S., Austin, J., Willshaw, D. (eds.) Emergent Neural Computational Architectures Based on Neuroscience. LNCS (LNAI), vol. 2036, pp. 480–486. Springer, Heidelberg (2001)

    Google Scholar 

  14. Prat, F., Casacuberta, F., Castro, M.J.: Machine translation with grammar association: Combining neural networks and finite state models. In: Proceedings of the Second Workshop on Natural Language Processing and Neural Networks, pp. 53–60 (2001)

    Google Scholar 

  15. Sun, G.Z., Giles, C.L., Chen, H.H.: The Neural Network Pushdown Automaton: Architecture, Dynamics and Training. In: Giles, C.L., Gori, M. (eds.) IIASS-EMFCSC-School 1997. LNCS (LNAI), vol. 1387, pp. 296–345. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  16. Cleeremans, A., Servan-Schreiber, D., McClelland, J.L.: Finite state automata and simple recurrent networks. Neural Computation 1(3), 372–381 (1989)

    Article  Google Scholar 

  17. Giles, C.L., Miller, C.B., Chen, D., Chen, H.H., Sun, G.Z., Lee, Y.C.: Learning and extracted finite state automata with second-order recurrent neural networks. Neural Computation 4(3), 393–405 (1992)

    Article  Google Scholar 

  18. Manolios, P., Fanelli, R.: First order recurrent neural networks and deterministic finite state automata. Neural Computation 6(6), 1154–1172 (1994)

    Article  Google Scholar 

  19. Gori, M., Maggini, M., Martinelli, E., Soda, G.: Inductive inference from noisy examples using the hybrid finite state filter. IEEE Transactions on Neural Networks 9(3), 571–575 (1998)

    Article  Google Scholar 

  20. Bensaali, F., Amira, A.: Accelerating colour space conversion on reconfigurable hardware. Image and Vision Computing 23, 935–942 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Mira José R. Álvarez

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Mira, J., Delgado, A.E., Fernández-Caballero, A., López, M.T., Fernández, M.A. (2007). The Underlying Formal Model of Algorithmic Lateral Inhibition in Motion Detection. In: Mira, J., Álvarez, J.R. (eds) Nature Inspired Problem-Solving Methods in Knowledge Engineering. IWINAC 2007. Lecture Notes in Computer Science, vol 4528. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73055-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73055-2_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73054-5

  • Online ISBN: 978-3-540-73055-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics